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Abstract

The primary way of providing real-time cap-
tioning for deaf and hard of hearing people
is to employ expensive professional stenogra-
phers who can type as fast as natural speak-
ing rates. Recent work has shown that a
feasible alternative is to combine the partial
captions of ordinary typists, each of whom
types part of what they hear. In this paper,
we describe an improved method for combin-
ing partial captions into a final output based
on weighted A∗ search and multiple sequence
alignment (MSA). In contrast to prior work,
our method allows the tradeoff between accu-
racy and speed to be tuned, and provides for-
mal error bounds. Our method outperforms
the current state-of-the-art on Word Error Rate
(WER) (29.6%), BLEU Score (41.4%), and
F-measure (36.9%). The end goal is for
these captions to be used by people, and so
we also compare how these metrics correlate
with the judgments of 50 study participants,
which may assist others looking to make fur-
ther progress on this problem.

1 Introduction

Real-time captioning provides deaf or hard of hear-
ing people access to speech in mainstream class-
rooms, at public events, and on live television. To
maintain consistency between the captions being
read and other visual cues, the latency between when
a word was said and when it is displayed must be
under five seconds. The most common approach to
real-time captioning is to recruit a trained stenogra-
pher with a special purpose phonetic keyboard, who
transcribes the speech to text within approximately 5
seconds. Unfortunately, professional captionists are
quite expensive ($150 per hour), must be recruited in
blocks of an hour or more, and are difficult to sched-
ule on short notice. Automatic speech recognition
(ASR) (Saraclar et al., 2002) attempts to solve this

Figure 1: General layout of crowd captioning systems.
Captionists (C1, C2, C3) submit partial captions that are
automatically combined into a high-quality output.

problem by converting speech to text completely au-
tomatically. However, the accuracy of ASR quickly
plummets to below 30% when used on an untrained
speaker’s voice, in a new environment, or in the ab-
sence of a high quality microphone (Wald, 2006b).

An alternative approach is to combine the efforts
of multiple non-expert captionists (anyone who can
type) (Lasecki et al., 2012; Lasecki and Bigham,
2012; Lasecki et al., 2013). In this approach, mul-
tiple non-expert human workers transcribe an audio
stream containing speech in real-time, and their par-
tial input is combined to produce a final transcript
(see Figure 1). This approach has been shown to
dramatically outperform ASR in terms of both accu-
racy and Word Error Rate (WER), even when us-
ing captionists drawn from Amazon’s Mechanical
Turk. Furthermore, recall approached and even ex-
ceeded that of a trained expert stenographer with
seven workers contributing, suggesting that the in-
formation is present to meet the performance of a
stenographer. However, combining these captions
involves real-time alignment of partial captions that
may be incomplete and that often have spelling er-
rors and inconsistent timestamps. In this paper,
we present a more accurate combiner that leverages



Multiple Sequence Alignment (MSA) and Natural
Language Processing to improve performance.

Gauging the quality of captions is not easy. Al-
though word error rate (WER) is commonly used in
speech recognition, it considers accuracy and com-
pleteness, not readability. As a result, a lower WER
does not always result in better understanding (Wang
et al., 2003). We compare WER with two other com-
monly used metrics: BLEU (Papineni et al., 2002)
and F-measure (Melamed et al., 2003), and report
their correlation with that of 50 human evaluators.

The key contributions of this paper are as follows:

• We have implemented an A∗-search based Mul-
tiple Sequence Alignment algorithm (Lermen
and Reinert, 2000) that can trade-off speed and
accuracy by varying the heuristic weight and
chunk-size parameters. We show that it outper-
forms previous approaches in terms of WER,
BLEU score, and F-measure.

• We propose a beam-search based technique us-
ing the timing information of the captions that
helps to restrict the search space and scales ef-
fectively to align longer sequences efficiently.

• We evaluate the correlation of WER, BLEU,
and F-measure with 50 human ratings of cap-
tion readability, and found that WER was more
highly correlated than BLEU score (Papineni
et al., 2002), implying it may be a more useful
metric overall when evaluating captions.

2 Related Work

Most of the previous research on real-time caption-
ing has focused on Automated Speech Recognition
(ASR) (Saraclar et al., 2002; Cooke et al., 2001;
Prǎzák et al., 2012). However, experiments show
that ASR systems are not robust enough to be ap-
plied for arbitrary speakers and in noisy environ-
ments (Wald, 2006b; Wald, 2006a; Bain et al., 2005;
Bain et al., 2012; Cooke et al., 2001).

2.1 Crowd Captioning

To address these limitations of ASR-based tech-
niques, the Scribe system collects partial captions
from the crowd and then uses a graph-based in-
cremental algorithm to combine them on the fly
(Lasecki et al., 2012). The system incrementally

builds a chain graph, where each node represents a
set of equivalent words entered by the workers and
the link between nodes are adjusted according to the
order of the input words. A greedy search is per-
formed to identify the path with the highest confi-
dence, based on worker input and an n-gram lan-
guage model. The algorithm is designed to be used
online, and hence has high speed and low latency.
However, due to the incremental nature of the algo-
rithm and due to the lack of a principled objective
function, it is not guaranteed to find the globally op-
timal alignment for the captions.

2.2 Multiple Sequence Alignment

The problem of aligning and combining multiple
transcripts can be mapped to the well-studied Mul-
tiple Sequence Alignment (MSA) problem (Edgar
and Batzoglou, 2006). MSA is an important prob-
lem in computational biology (Durbin et al., 1998).
The goal is to find an optimal alignment from a
given set of biological sequences. The pairwise
alignment problem can be solved efficiently using
dynamic programming inO(N2) time and space,
whereN is the sequence length. The complexity of
the MSA problem grows exponentially as the num-
ber of sequences grows, and has been shown to be
NP-complete (Wang and Jiang, 1994). Therefore,
it is important to apply some heuristic to perform
MSA in a reasonable amount of time.

Most MSA algorithms for biological sequences
follow a progressive alignment strategy that first per-
forms pairwise alignment among the sequences, and
then builds a guide tree based on the pairwise simi-
larity between these sequences (Edgar, 2004; Do et
al., 2005; Thompson et al., 1994). Finally, the input
sequences are aligned according to the order spec-
ified by the guide tree. While not commonly used
for biological sequences, MSA with A∗-style search
has been applied to these problems by Horton (1997)
and Lermen and Reinert (2000).

Lasecki et al. explored MSA in the context of
merging partial captions by using the off-the-shelf
MSA toolMUSCLE(Edgar, 2004), replacing the nu-
cleotide characters by English characters (Lasecki
et al., 2012). The substitution cost for nucleotides
was replaced by the ‘keyboard distance’ between
English characters, learned from the physical lay-
out of a keyboard and based on common spelling



errors. However, MUSCLE relies on a progressive
alignment strategy and may result in suboptimal so-
lutions. Moreover, it uses characters as atomic sym-
bols instead of words. Our approach operates on a
per-word basis and is able to arrive at a solution that
is within a selectable error-bound of optimal.

3 Multiple Sequence Alignment

We start with an overview of the MSA problem us-
ing standard notations as described by Lermen and
Reinert (2000). LetS1, . . . , SK , K ≥ 2, be theK

sequences over an alphabetΣ, and having length
N1, . . . , NK . The special gap symbol is denoted by
‘−’ and does not belong toΣ. Let A = (aij) be a
K × Nf matrix, whereaij ∈ Σ ∪ {−}, and theith

row has exactly(Nf − Ni) gaps and is identical to
Si if we ignore the gaps. Every column ofA must
have at least one non-gap symbol. Therefore, thejth

column ofA indicates an alignment state for thejth

position, where the state can have one of the2K − 1
possible combinations. Our goal is to find the op-
timum alignment matrixAOPT that minimizes the
sum of pairs (SOP) cost function:

c(A) =
∑

1≤i≤j≤K

c(Aij) (1)

wherec(Aij) is the cost of the pairwise alignment
betweenSi and Sj according toA. Formally,

c(Aij) =
∑Nf

l=1
sub(ail, ajl), where sub(ail, ajl)

denotes the cost of substitutingajl for ail. If ail

and ajl are identical, the substitution cost is usu-
ally zero. For the caption alignment task, we treat
each individual word as a symbol in our alphabet
Σ. The substitution cost for two words is estimated
based on the edit distance between two words. The
exact solution to the SOP optimization problem is
NP-Complete, but many methods solve it approxi-
mately. In this paper, we adapt weighted A∗ search
for approximately solving the MSA problem.

3.1 A∗ Search for MSA

The problem of minimizing the SOP cost func-
tion for K sequences is equivalent to estimating the
shortest path between a single source and single sink
node in aK-dimensional lattice. The total num-
ber of nodes in the lattice is(N1 + 1) × (N2 +

Algorithm 1 MSA-A∗ Algorithm
Require: K input sequencesS = {S1, . . . , SK} having

lengthN1, . . . , NK , heuristic weightw, beam sizeb

1: start← 0K , goal← [N1, . . . , NK ]
2: g(start)← 0, f(start)← w × h(start).
3: Q← {start}
4: while Q 6= ∅ do
5: n← EXTRACT-MIN(Q)
6: for all s ∈ {0, 1}K − {0K} do
7: ni ← n + s

8: if ni = goal then
9: Return the alignment matrix for the reconstructed

path fromstart to ni

10: else if ni 6∈ Beam(b) then
11: continue;
12: else
13: g(ni)← g(n) + c(n, ni)
14: f(ni)← g(ni) + w × h(ni)
15: INSERT-ITEM(Q, ni, f(ni))
16: end if
17: end for
18: end while

1) × · · · × (NK + 1), each corresponding to a dis-
tinct position inK sequences. The source node is
[0, . . . , 0] and the sink node is[N1, . . . , NK ]. The
dynamic programming algorithm for estimating the
shortest path from source to sink treats each node
position[n1, . . . , nK ] as a state and calculates a ma-
trix that has one entry for each node. Assuming the
sequences have roughly same lengthN , the size of
the dynamic programming matrix isO(NK). At
each vertex, we need to minimize the cost over all
its 2K − 1 predecessor nodes, and, for each such
transition, we need to estimate the SOP objective
function that requiresO(K2) operations. Therefore,
the dynamic programming algorithm has time com-
plexity of O(K22KNK) and space complexity of
O(NK), which is infeasible for most practical prob-
lem instances. However, we can efficiently solve it
via heuristic A∗ search (Lermen and Reinert, 2000).

We use A∗ search based MSA (shown in Algo-
rithm 1, illustrated in Figure 2) that uses a prior-
ity queueQ to store dynamic programming states
corresponding to node positions in theK dimen-
sional lattice. Letn = [n1, . . . , nK ] be any node
in the lattice,s be the source, andt be the sink. The
A∗ search can find the shortest path using a greedy
Best First Search according to an evaluation func-
tion f(n), which is the summation of the cost func-



Figure 2:A∗ MSA search algorithm. Each branch is one of2K − 1 possible alignments for the current input. The
branch with minimum sum of the current alignment cost and theexpected heuristic valuehpair (precomputed).

tionsg(n) and the heuristic functionh(n) for node
n. The cost functiong(n) denotes the cost of the
shortest path from the sources to the current node
n. The heuristic functionh(n) is the approximate
estimated cost of the shortest path fromn to the des-
tination t. At each step of the A∗ search algorithm,
we extract the node with the smallestf(n) value
from the priority queueQ and expand it by one edge.
The heuristic functionh(n) is admissible if it never
overestimates the cost of the cheapest solution from
n to the destination. An admissible heuristic func-
tion guarantees that A∗ will explore the minimum
number of nodes and will always find the optimal
solution. One commonly used admissible heuristic
function ishpair(n):

hpair(n) = L(n → t) =
∑

1≤i<j≤K

c(A∗
p(σ

n
i , σn

j ))

(2)
whereL(n → t) denotes the lower bound on the
cost of the shortest path fromn to destinationt, A∗

p

is the optimal pairwise alignment, andσn
i is the suf-

fix of noden in the i-th sequence. A∗ search using
the pairwise heuristic functionhpair significantly re-
duces the search space and also guarantees finding
the optimal solution. We must be able to estimate
hpair(n) efficiently. It may appear that we need to
estimate the optimal pairwise alignment for all the
pairs of suffix sequences at every node. However,
we can precompute the dynamic programming ma-
trix over all the pair of sequences(Si, Sj) once from
the backward direction, and then reuse these values
at each node. This simple trick significantly speeds
up the computation ofhpair(n).

Despite the significant reduction in the search
space, the A∗ search may still need to explore a
large number of nodes, and may become too slow
for real-time captioning. However, we can further
improve the speed by following the idea ofweighted
A∗ search (Pohl, 1970). We modify the evaluation

functionf(n) = g(n)+hpair(n) to a weighted eval-
uation functionf ′(n) = g(n) + whpair(n), where
w ≥ 1 is a weight parameter. By setting the value
of w to be greater than 1, we increase the relative
weight of the estimated cost to reach the destina-
tion. Therefore, the search prefers the nodes that are
closer to the destination, and thus reaches the goal
faster. Weighted A∗ search can significantly reduce
the number of nodes to be examined, but it also loses
the optimality guarantee of the admissible heuristic
function. We can trade-off between accuracy and
speed by tuning the weight parameterw.

3.2 Beam Search using Time-stamps

The computational cost of the A∗ search algorithm
grows exponentially with increase in the number of
sequences. However, in order to keep the crowd-
sourced captioning system cost-effective, only a
small number of workers are generally recruited at
a time (typicallyK ≤ 10). We, therefore, are more
concerned about the growth in computational cost as
the sequence length increases.

In practice, we break down the sequences into
smaller chunks by maintaining a window of a given
time interval, and we apply MSA only to the smaller
chunks of captions entered by the workers during
that time window. As the window size increases,
the accuracy of our MSA based combining system
increases, but so does the computational cost and la-
tency. Therefore, it is important to apply MSA with
a relatively small window size for real-time caption-
ing applications. Another interesting application can
be the offline captioning, for example, captioning an
entire lecture and uploading the captions later.

For the offline captioning problem, we can fo-
cus less on latency and more on accuracy by align-
ing longer sequences. To restrict the search space
from exploding with sequence length (N ), we apply
a beam constraint on our search space using the time
stamps of each captioned words. For example, if we



1. so now what i want to do is introduce some of the
2. what i wanna do is introduce some of the aspects of the class
3. so now what i want to do is is introduce some of the aspects of the class
4. so now what i want to do is introduce
5. so now what i want to do is introduce some of the operational of the class
6. so i want to introduce some of the operational aspects of the clas
C. so now what i want to do is introduce some of the operational aspects of the class

Figure 3: An example of applying MSA-A∗ (thresholdtv = 2) to combine 6 partial captions (first 6 lines) by human
workers to obtain the final output caption (C).

set the beam size to be 20 seconds, then we ignore
any state in our search space that aligns two words
having more than 20 seconds time lag. Given a fixed
beam sizeb, we can restrict the number of priority
queue removals by the A∗ algorithm toO(NbK).
The maximum size of the priority queue isO(NbK).
For each node in the priority queue, for each of the
O(2K) successor states, the objective function and
heuristic estimation requiresO(K2) operations and
each priority queue insertion requiresO(log(NbK))
i.e. O(log N + K log b) operations. Therefore,
the overall worst case computational complexity is
O

(

NbK2K(K2 + log N + K log b)
)

. Note that for
fixed beam sizeb and number of sequencesK, the
computational cost grows asO(N log N) with the
increase inN . However, in practice, weighted A∗

search explores much smaller number of states com-
pared to this beam-restricted space.

3.3 Majority Voting after Alignment

After aligning the captions by multiple workers in a
given chunk, we need to combine them to obtain the
final caption. We do that via majority voting at each
position of the alignment matrix containing a non-
gap symbol. In case of tie, we apply the language
model to choose the most likely word.

Often workers type in nonstandard symbols, ab-
breviations, or misspelled words that do not match
with any other workers’ input and end up as a sin-
gle word aligned to gaps in all the other sequences.
To filter out such spurious words, we apply a vot-
ing threshold (tv) during majority voting and filter
out words having less thantv votes. Typically we
settv = 2 (see the example in Figure 3). While ap-
plying the voting threshold improves the word error
rate and readability, it runs the risk of loosing correct
words if they are covered by only a single worker.

3.4 Incorporating an N-gram Language Model

We also experimented with a version of our system
designed to incorporate the score from ann-gram
language model into the search. For this purpose,
we modified the alignment algorithm to produce a
hypothesized output string as it moves through the
input strings, as opposed to using voting to produce
the final string as a post-processing step. The states
for our dynamic programming are extended to in-
clude not only the current position in each input
string, but also the last two words of the hypothesis
string (i.e.[n1, . . . , nK , wi−1, wi−2]) for use in com-
puting the next trigram language model probability.
We replace our sum-of-all-pairs objective function
with the sum of the alignment cost of each input with
the hypothesis string, to which we add the log of the
language model probability and a feature for the to-
tal number of words in the hypothesis. Mathemati-
cally, we consider the hypothesis string to be the 0th
row of the alignment matrix, making our objective
function:

c(A) =
∑

1≤i≤K

c(A0,i) + wlen

Nf
∑

l=1

I(a0,l 6= −)

+ wlm

Nf
∑

l=1

log P (a0,l|a0,l−2, a0,l−1)

wherewlm andwlen are negative constants indicat-
ing the relative weights of the language model prob-
ability and the length penalty.

Extending states with two previous words results
in a larger computational complexity. GivenK se-
quences of lengthN each, we can haveO(NK) dis-
tinct words. Therefore, the number distinct states
is O(NbK(NK)2) i.e. O(N3K2bK). Each state
can haveO(K2K) successors, giving an overall
computational complexity ofO(N3K3bK2K(K2 +
log N + log K + K log b)). Alternatively, if the vo-



cabulary size|V | is smaller thanNK, the number of
distinct states is bounded byO(NbK |V |2).

3.5 Evaluation Metric for Speech to Text
Captioning

Automated evaluation of speech to text captioning is
known to be a challenging task (Wang et al., 2003).
Word Error Rate (WER) is the most commonly used
metric that finds the best pairwise alignment be-
tween the candidate caption and the ground truth
reference sentence. WER is estimated asS+I+D

N
,

whereS, I, andD is the number of incorrect word
substitutions, insertions, and deletions required to
match the candidate sentence with reference, andN

is the total number of words in the reference. WER
has several nice properties such as: 1) it is easy
to estimate, and 2) it tries to preserve word order-
ing. However, WER does not account for the overall
‘readability’ of text and thus does not always corre-
late well with human evaluation (Wang et al., 2003;
He et al., 2011).

The widely-used BLEU metric has been shown
to agree well with human judgment for evaluating
translation quality (Papineni et al., 2002). However,
unlike WER, BLEU imposes no explicit constraints
on the word ordering. BLEU has been criticized as
an ‘under-constrained’ measure (Callison-Burch et
al., 2006) for allowing too much variation in word
ordering. Moreover, BLEU does not directly esti-
mate recall, and instead relies on the brevity penalty.
Melamed et al. (2003) suggest that a better approach
is to explicitly measure both precision and recall and
combine them via F-measure.

Our application is similar to automatic speech
recognition in that there is a single correct output,
as opposed to machine translation where many out-
puts can be equally correct. On the other hand, un-
like with ASR, out-of-order output is frequently pro-
duced by our alignment system when there is not
enough overlap between the partial captions to de-
rive the correct ordering for all words. It may be
the case that even such out-of-order output can be
of value to the user, and should receive some sort of
partial credit that is not possible using WER. For
this reason, we wished to systematically compare
BLEU, F-measure, and WER as metrics for our task.

We performed a study to evaluate the agreement
of the three metrics with human judgment. We ran-

Metric Spearman Corr. Pearson Corr.

1-WER 0.5258 0.6282
BLEU 0.3137 0.6181

F-measure 0.4389 0.6240

Table 1: The correlation of average human judgment with
three automated metrics: 1-WER, BLEU, and F-measure.

domly extracted one-minute long audio clips from
four MIT OpenCourseWare lectures. Each clip was
transcribed by 7 human workers, and then aligned
and combined using four different systems: the
graph-based system, and three different versions of
our weighted A∗ algorithm with different values of
tuning parameters. Fifty people participated in the
study and were split in two equal sized groups. Each
group was assigned two of the four audio clips,
and each person evaluated all four captions for both
clips. Each participant assigned a score between 1
to 10 to these captions, based on two criteria: 1) the
overall estimated agreement of the captions with the
ground truth text, and 2) the readability and under-
standability of the captions.

Finally, we estimated the correlation coefficients
(both Spearman and Pearson) for the three metrics
discussed above with respect to the average score
assigned by the human participants. The results
are presented in Table 1. Among the three metrics,
WER had the highest agreement with the human par-
ticipants. This indicates that reconstructing the cor-
rect word order is in fact important to the users, and
that, in this aspect, our task has more of the flavor of
speech recognition than of machine translation.

4 Experimental Results

We experiment with the MSA-A∗ algorithm for cap-
tioning different audio clips, and compare the results
with two existing techniques. Our experimental set
up is similar to the experiments by Lasecki et al.
(2012). Our dataset consists of four 5-minute long
audio clips extracted from lectures available on MIT
OpenCourseWare. The audio clips contain speech
from electrical engineering and chemistry lectures.
Each audio clip is transcribed by ten non-expert hu-
man workers in real-time. We then combine these
inputs using our MSA-A∗ algorithm, and also com-
pare with the existing graph-based system and mul-
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Figure 4: Evaluation of different systems on using three
different automated metrics for measuring transcription
quality: 1- Word Error Rate (WER), BLEU, and F-
measure on the four audio clips.

tiple sequence alignment using MUSCLE.

As explained earlier, we vary the four key pa-
rameters of the algorithm: the chunk size (c), the
heuristic weight (w), the voting threshold (tv), and
the beam size (b). The heuristic weight and chunk
size parameters help us to trade-off between speed
versus accuracy; the voting thresholdtv helps im-
prove precision by pruning words having less than
tv votes, and beam size reduces the search space by
restricting states to be inside a time window/beam.
We use affine gap penalty (Edgar, 2004) with dif-
ferent gap opening and gap extension penalty. We
set gap opening penalty to 0.125 and gap extension
penalty to 0.05. We evaluate the performance using
the three standard metrics: Word Error Rate (WER),
BLEU, and F-measure. The performance in terms of
these metrics using different systems is presented in
Figure 4.

Out of the five systems in Figure 4, the first three
are different versions of our A∗ search based MSA
algorithm with different parameter settings: 1) A∗-
10-t system (c = 10 seconds,tv = 2), 2) A∗-15-t (c =
15 seconds,tv = 2), and 3) A∗-15 (c = 15 seconds,tv
= 1 i.e. no pruning while voting). For all three sys-
tems, the heuristic weight parameterw is set to 2.5
and beam sizeb = 20 seconds. The other two sys-
tems are the existing graph-based system and mul-
tiple sequence alignment using MUSCLE. Among
the three A∗ based algorithms, both A∗-15-t and A∗-
10-t produce better quality transcripts and outper-
form the existing algorithms. Both systems apply
the voting threshold that improves precision. The
system A∗-15 applies no threshold and ends up pro-
ducing many spurious words having poor agreement
among the workers, and hence it scores worse in all
the three metrics. The A∗-15-t achieves 57.4% aver-
age accuracy in terms of (1-WER), providing 29.6%
improvement with respect to the graph-based sys-
tem (average accuracy 42.6%), and 35.4% improve-
ment with respect to the MUSCLE-based MSA sys-
tem (average accuracy 41.9%). On the same set of
audio clips, Lasecki et al. (2012) reported 36.6% ac-
curacy using ASR (Dragon Naturally Speaking, ver-
sion 11.5 for Windows), which is worse than all the
crowd-based based systems used in this experiment.
To measure the statistical significance of this im-
provement, we performed at-test at both the dataset
level (n = 4 clips) and the word level (n = 2862
words). The improvement over the graph-based
model was statistically significant with dataset level
p-value 0.001 and word levelp-value smaller than
0.0001. The average time to align each 15 second
chunk with 10 input captions is∼400 milliseconds.

We have also experimented with a trigram lan-
guage model, trained on the British National Cor-
pus (Burnard, 1995) having∼122 million words.
The language-model-integrated A∗ search provided
a negligible 0.21% improvement in WER over the
A∗-15-t system on average. The task of combin-
ing captions does not require recognizing words; it
only requires aligning them in the correct order. This
could explain why language model did not improve
accuracy, as it does for speech recognition. Since
the standard MSA-A∗ algorithm (without language
model) produced comparable accuracy and faster
running time, we used that version in the rest of the
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Figure 5: The trade-off between speed and accuracy for different heuristic weights and chunk size parameters.

experiments.

Next, we look at the critical speed versus accuracy
trade-off for different values of the heuristic weight
(w) and the chunk size (c) parameters. Since WER
has been shown to correlate most with human judg-
ment, we show the next results only with respect to
WER. First, we fix the chunk size at different val-
ues, and then vary the heuristic weight parameter:
w = 1.8, 2, 2.5, 3, 4, 6, and 8. The results are
shown in Figure 5(a), where each curve represents
how time and accuracy changed over the range of
values ofw and a fixed value ofc. We observe that
for smaller values ofw, the algorithm is more accu-
rate, but comparatively slower. Asw increases, the
search reaches the goal faster, but the quality of the
solution degrades as well. Next, we fixw and vary
chunk sizec = 5, 10, 15, 20, 40, 60 second. We re-
peat this experiment for a range of values ofw and
the results are shown in Figure 5(b). We can see that
the accuracy improves steeply up toc = 20 seconds,
and does not improve much beyondc = 40 seconds.
For all these benchmarks, we set the beam size (b)
to 20 seconds and voting threshold (tv) to 2.

In our tests, the beam size parameter (b) did not
play a significant role in performance, and setting it
to any reasonably large value (usually≥ 15 seconds)
resulted in similar accuracy and running time. This
is because the A∗ search withhpair heuristic already
reduces the the search space significantly, and usu-
ally reaches the goal in a number of steps smaller
than the state space size after the beam restriction.

Finally, we investigate how the accuracy of our
algorithm varies with the number of inputs/workers.
We start with a pool of 10 input captions for one of
the audio clips. We vary the number of input cap-
tions (K) to the MSA-A∗ algorithm from 2 up to 10.
The quality of input captions differs greatly among
the workers. Therefore, for each value ofK, we re-
peat the experimentmin

(

20,
(

10

K

))

times; each time
we randomly selectK input captions out of the total
pool of 10. Figure 6 shows that accuracy steeply
increases as the number of inputs increases to 7,
and after that adding more workers does not pro-
vide much improvement in accuracy, but increases
running time.

5 Discussion and Future Work

In this paper, we show that the A∗ search based
MSA algorithm performs better than existing algo-
rithms for combining multiple captions. The exist-
ing graph-based model has low latency, but it usually
can not find a near optimal alignment because of its
incremental alignment. Weighted A∗ search on the
other hand performs joint multiple sequence align-
ment, and is guaranteed to produce a solution hav-
ing cost no more than(1 + ǫ) times the cost of the
optimal solution, given a heuristic weight of(1+ ǫ).
Moreover, A∗ search allows for straightforward in-
tegration of an n-gram language model during the
search.

Another key advantage of the proposed algorithm
is the ease with which we can trade-off between
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Figure 6: Experiments showing how the accuracy of the
final caption by MSA-A∗ algorithm varies with the num-
ber of inputs from 2 to 10.

speed and accuracy. The algorithm can be tailored
to real-time by using a larger heuristic weight. On
the other hand, we can produce better transcripts for
offline tasks by choosing a smaller weight.

It is interesting to compare our results with those
achieved using the MUSCLE MSA tool of Edgar
(2004). One difference is that our system takes a hi-
erarchical approach in that it aligns at the word level,
but also uses string edit distance at the letter level
as a substitution cost for words. Thus, it is able to
take advantage of the fact that individual transcrip-
tions do not generally contain arbitrary fragments of
words. More fundamentally, it is interesting to note
that MUSCLE and most other commonly used MSA
tools for biological sequences make use of aguide
tree formed by a hierarchical clustering of the in-
put sequences. The guide tree produced by the algo-
rithms may or may not match the evolutionary tree
of the organisms whose genomes are being aligned,
but, nevertheless, in the biological application, such
an underlying evolutionary tree generally exists. In
aligning transcriptions, there is no particular reason
to expect individual pairs of transcriptions to be es-
pecially similar to one another, which may make the
guide tree approach less appropriate.

In order to get competitive results, the A∗ search
based algorithm aligns sequences that are at least 7-
10 seconds long. The delay for collecting the cap-
tions within a chunk can introduce latency, however,

each alignment usually takes less than 300 millisec-
onds, allowing us to repeatedly align the stream of
words, even before the window is filled. This pro-
vides less accurate but immediate response to users.
Finally, when we have all the words entered in a
chunk, we perform the final alignment and show the
caption to users for the entire chunk.

After aligning the input sequences, we obtain the
final transcript by majority voting at each alignment
position, which treats each worker equally and does
not take individual quality into account. Recently,
some work has been done for automatically estimat-
ing individual worker’s quality for crowd-based data
labeling tasks (Karger et al., 2011; Liu et al., 2012).
Extending these methods for crowd-based text cap-
tioning could be an interesting future direction.

6 Conclusion

In this paper, we have introduced a new A∗ search
based MSA algorithm for aligning partial captions
into a final output stream in real-time. This method
has advantages over prior approaches both in for-
mal guarantees of optimality and the ability to trade
off speed and accuracy. Our experiments on real
captioning data show that it outperforms prior ap-
proaches based on a dependency graph model and a
standard MSA implementation (MUSCLE). An ex-
periment with 50 participants explored whether ex-
iting automatic metrics of quality matched human
evaluations of readability, showing WER did best.
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