

Self-correcting Crowds

Abstract
Much of the current work in crowdsourcing is focused
on increasing the quality of responses. Quality issues
are most often due to a small subset of low quality
workers. The ability to distinguish between high and
low quality workers would allow a wide range of error
correction to be performed for such tasks. However,
differentiating between these types is difficult when no
measure of individual success is available. We propose
it is possible to use higher quality workers to
compensate for lower quality ones, without explicitly
identifying them, by allowing them to observe and react
to the input of the collective. In this paper, we present
initial work on eliciting this behavior and discuss how it
may be possible to leverage self-correction in the crowd
for better performance on continuous real-time tasks.

Keywords
Crowdsourcing, Human Computation, Error Correction

ACM Classification Keywords
H.1.2 [User/Machine Systems]: Human information
processing; H.4.1 [Office Automation]: Groupware

General Terms
Algorithms, Reliability, Performance, Human Factors

Copyright is held by the author/owner(s).

CHI’12, May 5–10, 2012, Austin, Texas, USA.
ACM 978-1-4503-1016-1/12/05.

Walter S. Lasecki
University of Rochester
252 Elmwood Ave.
Rochester, NY 14627 USA
wlasecki@cs.rochester.edu

Jeffrey P. Bigham
University of Rochester
252 Elmwood Ave.
Rochester, NY 14627 USA
jbigham@cs.rochester.edu

 2

Introduction
Using the crowd, a dynamic group of workers available
on-demand, has been proven to be very effective for
completing tasks that automatic systems currently
cannot. However, workers in the crowd vary greatly in
ability and attentiveness. Most low quality worker are
not malicious, but instead either don’t understand the
task, have impairments such as a poor connection, or
are simply lazy. We propose the idea of self-correcting
crowds created by giving high quality workers the
ability to compensate for less effective ones.

Our approach currently focuses only on changing the
information available to workers. This method can
generalize to nearly any type of task, and is especially
advantageous to those needing quick responses, using
smaller crowds. We present findings from a set of initial
tests, and discuss design considerations for eliciting
self-correcting crowds in existing systems.

Premise
Crowdsourcing relies on workers contributing pieces of
knowledge towards a task. Current methods focus on
trying to extract the correct answer from each worker
and either averaging responses, or using the majority
selection. However, the final answer can be biased by
the incorrect input of a small group of workers. This is
especially true when large crowds are not available, as
is often the case in real-time crowdsourcing.

Our goal is to let attentive workers who understand the
task compensate for those who do not by overshooting
their answer, to skew the average towards what they
view to be the correct answer. A majority of low quality
workers are not actively trying to compromise the final
output, but are either lazy or don’t understand the

task. We propose that enabling workers to accurately
skew the final answer will primarily be used by higher
quality workers, and ignored by low quality workers.

Continuous real-time crowd sourcing systems such as
Legion [2], which enables crowd control of user
interfaces, are of particular interest. Giving workers the
ability to make these to adjust for low quality answers
at the same time they submit input, rather than using a
post-processing stage, allows for much quicker
corrections even in domains that lack easily computable
measures of quality. Self-correction allows us to benefit
from properties of high quality groups of workers,
without needing to identify them.

Self-Correction
We define self-correction for tasks using two main
methods of combining input used in crowdsourcing:

• Averaging: Tasks where worker inputs are
combined to reach a final decision. Potential
inputs must occur on a continuum, and the
result of the average may not be the choice of
any single worker.

• Voting: Tasks where answers cannot be
combined, so a majority decision is most often
used. The final answer must be the input of at
least one worker.

For tasks that average responses, correction can be
performed by encouraging workers to overshoot the
correct answer – selecting instead an answer that
causes the average of the crowd to come closer to the
correct one. This type of adjustment is done in real-
time and does not require any method of automatically

 3

determining worker quality. For real-time
crowdsourcing tasks, this means increasing accuracy
without adding additional response time.

For tasks that elicit votes for distinct responses,
workers can be asked to rank their choices (Borda
count), or otherwise use a voting system that has them
rate multiple options. This can be seen as converting
the task to a multi-variable averaging problem, where
each option’s score is being averaged. Combining the
answers will result in a crowd ranking of options.
Workers can vote their selection higher and reduce the
average ranking of others they believe to be incorrect.
The higher an incorrect answer appears in the crowd
ranking, the lower a worker will rate it in order to
reduce its likelihood of winning. While this will enable
correction, it should be noted that this type of voting
scheme also allows for final choices that are not the
selection of any single worker. For instance, if half of
workers rank three options in the order 1,2,3 while the
other half rank them 3,2,1 then option 2 will win even
though it was no ones top choice. For most tasks this
does not detract from the reliability of the final answer.
This type of voting is often considered more reliable,
and as such is used by many large-scale institutions1.

Although we focus on cases where large crowds are not
available, the ability of self-correction to be applied in
both of these types of task allows for most current
crowdsourcing tasks to take advantage of this.

1 For example, some sports leagues such as the NCAA use large

crowds and have contributors provide rankings in this way

Initial Tests
To test self-correction, we implemented a simple web-
based game in which workers try to navigate a cursor
through a series of barriers, each containing small
openings, by controlling the horizontal position of the
cursor. Figure 1 shows the game presented to workers.

In order to compensate for other workers, it must be
possible for high quality workers to view the status of
the crowd decision. That way, they can understand the
need for and effect of overshooting. Each worker is
shown both the position of the crowd and the worker’s
individual cursor. The position of the crowd cursor was
determined by averaging all of the worker positions.
Using the left and right arrow keys, workers were able
to move their cursor horizontally to find the best choice
of position for both the crowd cursor and/or their own
to make it through the opening in the next barrier.

Tests were run using workers from Amazon’s
Mechanical Turk service, with two different payment
schemes. In the first, workers were paid one cent per
barrier for each getting their own cursor through the
opening, and two cents for each time the crowd’s
cursor made it through an opening. In the second, we
did not pay workers unless the crowd cursor made it
through. As a control, we ran one set of each test
without the crowd position visible to workers and only
rewarded workers based on their own cursor position.

 4

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Figure 1. The test interface from the perspective of a single worker. The grey barriers move from the top of the screen
to the bottom, at which point the cursors either collide (task fails), or pass through the opening (task succeeds).
Workers were asked to control the lightly shaded cursor using arrow keys. The position of the crowd cursor (dark red
block) was calculated by averaging the individual positions of all connected workers. The worker in the figure is trying to
overshoot the correct answer (position 3) to pull the crowd cursor toward the opening.

Observations
Our initial results showed that Mechanical Turk workers
often connected and remained mostly idle, making the
overall improvement we saw not statistically significant.

We found that a subset of workers attempted to correct
for the errors of others. However, the compensation
needed to elicit this behavior was higher than that
needed to simply recruit workers to control their own
cursor. As such, workers participating in the first set of

trials resorted to focusing on their own cursor. Workers
in the second trial who first tried to overshoot
abandoned the task quicker than those who did not. We
believe this is due to a disconnect between the rewards
given to users and their level of effort.

Besides the difference in motivating price, we also
found that workers needed a clear understanding not
just of how the system derived the crowd position but
also of how their decision was affecting the crowd.

 5

Future Work
Our initial work has shown that self-correcting behavior
can be elicited in the crowd. It has also demonstrated
that there are additional concerns for the design of the
interface, beyond those of the original task.

Design
Designing interfaces that allow workers to see enough
about other user’s inputs to correct for them, but do
not enable them to collude in a way that would
undermine the motivation scheme of the system (such
as agreeing on a single answer just to get paid) is
difficult. Allowing users to see the current final
response in a task using averaging enables users to not
only correct, but also to agree on to the answer if
identifying the answer is easier than solving the
problem (which is not the case in our test). Also, when
trying to adapt these methods to work with any task
with no external metric, concerns arise that presenting
the group decision reveals what will be considered the
‘best’ answer by the system.

Motivation
Our approach also introduces additional ambiguity into
the system, since we discourage high quality workers
from converging to the correct answer. However, it
may be possible to use this to identify workers who are
helping to correct the answer based on behavior. This
would provide a means of rewarding workers based on
quality, even though one was not initially available.

Future Tests
Workers in our tests found the results of making
corrections to be too uncertain to make it worth it to
commit to influencing the crowd cursor position over
their own. This problem is similar to the Stag Hunt

problem from game theory, in which players are
guaranteed a small reward individually, but a larger
one if they can all agree on an action. In order to fix
this, future tests will both increase the reward for the
crowd’s success, and make it clearer what current
influence a worker’s current action is having on the
crowd cursor, instead of only showing the aggregate
position of the crowd as we do now. We will also focus
on the case were workers are only paid if the crowd
succeeds in passing through the barrier. This is also a
better analogue to real tasks, where it may not be
possible to identify when a single worker succeeds.

New Methods
It may be possible to enable stronger control of the
crowd decision. For example, the range of the options
limits the our method of skewing answers since the
amount one worker can skew a decision is at most half
the size of the total range. However, by artificially
extending the range of options (i.e. symmetrically
doubling the initial range), it may be possible to give
workers the ability to move the crowd anywhere in the
actual range. Final answers can be computed by
mapping the new range back to the old.

Background
Previous work has explored using workers to correct for
the errors made by others. The ESP Game [5] had
workers agree on the content of an image before
accepting a label as correct. We start with simultaneous
job complete as a basis for self-correcting tasks.

Soylent [1] uses groups of workers to check the error
finding and corrections performed by other groups. The
find-fix-verify process can be seen as a non-real-time
version of self-correction. It is important to note that to

 6

accomplish this, Soylent enforced a pattern to extract
the behavior, and did not rely on the individual quality
of workers. Our method aims to accomplish this by
using self-selecting groups drawn from the same crowd
by providing appropriate information and motivation.

Massively Multiplayer Pong [3] uses a similar control
scheme to our test game. Players each control a
“paddle” in a game of pong. Players are broken up into
two teams, and the position of each team’s collective
paddle is determined by the average position of all of
the members of the team. Players are able to see the
position of all players in the game, and the crowd as a
whole. We expect that self-correction did take place in
this setting, but no study of it was done performed.

Legion [2] is a system that enables continuous real-
time control of existing interfaces. Legion uses input
mediators to combine the input of multiple users in
real-time. It has been used to control interfaces for a
wide range of tasks, including robot navigation, word
processing, support for predictive keyboards, and
activity recognition. Currently, input is collected from
workers and merged over very short time spans in
order to simulate continuous control by a single user.
There is also no external metric that can be used to
determine if the current actions will lead to the correct
result prior to the task ending. In the future, we will
extend this continuous real-time platform to take
advantage of self-correcting crowds.

Conclusion
We have presented idea of self-correcting crowds, and
methods that use workers’ own ability to identify invalid
input, before a final decision is reached, to correct

mistakes. This can be used to improve the reliability of
real-time crowdsourcing by compensating for the input
of low quality workers even using small crowds, and
without adding significant delay.

Depending on the type of task, we can either ask
workers to directly compensate for others, or introduce
voting systems that allow the same behavior. We have
also discussed how future modifications to voting
schemes, such as artificially increasing the range of
choices, may lead to better control. Furthermore, it
may be possible to use this new worker behavior to
identify high quality workers in a crowd.

References
[1] Bernstein, M., Little, G., Miller, R., Hartmann, B.,
Ackerman, M., Karger, D., Crowell, D., and Panovich, K.
(2010). Soylent: A Word Processor with a Crowd
Inside. In Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST 2010). New
York, NY. p313-322.

[2] Lasecki, W.S., Murray, K.I., White, S., Miller, R.C.
and Bigham, J.P. (2011). Real-time Crowd Control of
Existing Interfaces. In Proceedings of the ACM
Symposium on User Interface Software and Technology
(UIST 2011). Santa Barbra, CA. p23-32.

[3] Massively multiplayer pong. (2006).
http://collisiondetection.net

[4] Surowiecki, J. (2004). The Wisdom of Crowds: Why
the Many Are Smarter Than the Few and How Collective
Wisdom Shapes Business, Economies, Societies and
Nations. Little, Brown.

[5] von Ahn, L., Dabbish, L. (2004). Labeling images
with a computer game. In Proceedings of the ACM
Conference on Human Factors in Computing Systems
(CHI 2004). Vienna, Austria. p319-326.

