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Abstract 
Much of the current work in crowdsourcing is focused 
on increasing the quality of responses. Quality issues 
are most often due to a small subset of low quality 
workers. The ability to distinguish between high and 
low quality workers would allow a wide range of error 
correction to be performed for such tasks. However, 
differentiating between these types is difficult when no 
measure of individual success is available. We propose 
it is possible to use higher quality workers to 
compensate for lower quality ones, without explicitly 
identifying them, by allowing them to observe and react 
to the input of the collective. In this paper, we present 
initial work on eliciting this behavior and discuss how it 
may be possible to leverage self-correction in the crowd 
for better performance on continuous real-time tasks. 
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Introduction 
Using the crowd, a dynamic group of workers available 
on-demand, has been proven to be very effective for 
completing tasks that automatic systems currently 
cannot. However, workers in the crowd vary greatly in 
ability and attentiveness. Most low quality worker are 
not malicious, but instead either don’t understand the 
task, have impairments such as a poor connection, or 
are simply lazy. We propose the idea of self-correcting 
crowds created by giving high quality workers the 
ability to compensate for less effective ones. 

Our approach currently focuses only on changing the 
information available to workers. This method can 
generalize to nearly any type of task, and is especially 
advantageous to those needing quick responses, using 
smaller crowds. We present findings from a set of initial 
tests, and discuss design considerations for eliciting 
self-correcting crowds in existing systems. 

Premise 
Crowdsourcing relies on workers contributing pieces of 
knowledge towards a task. Current methods focus on 
trying to extract the correct answer from each worker 
and either averaging responses, or using the majority 
selection. However, the final answer can be biased by 
the incorrect input of a small group of workers. This is 
especially true when large crowds are not available, as 
is often the case in real-time crowdsourcing. 

Our goal is to let attentive workers who understand the 
task compensate for those who do not by overshooting 
their answer, to skew the average towards what they 
view to be the correct answer. A majority of low quality 
workers are not actively trying to compromise the final 
output, but are either lazy or don’t understand the 

task. We propose that enabling workers to accurately 
skew the final answer will primarily be used by higher 
quality workers, and ignored by low quality workers. 

Continuous real-time crowd sourcing systems such as 
Legion [2], which enables crowd control of user 
interfaces, are of particular interest. Giving workers the 
ability to make these to adjust for low quality answers 
at the same time they submit input, rather than using a 
post-processing stage, allows for much quicker 
corrections even in domains that lack easily computable 
measures of quality. Self-correction allows us to benefit 
from properties of high quality groups of workers, 
without needing to identify them. 

Self-Correction 
We define self-correction for tasks using two main 
methods of combining input used in crowdsourcing: 

• Averaging: Tasks where worker inputs are 
combined to reach a final decision. Potential 
inputs must occur on a continuum, and the 
result of the average may not be the choice of 
any single worker. 

• Voting: Tasks where answers cannot be 
combined, so a majority decision is most often 
used. The final answer must be the input of at 
least one worker. 

For tasks that average responses, correction can be 
performed by encouraging workers to overshoot the 
correct answer – selecting instead an answer that 
causes the average of the crowd to come closer to the 
correct one. This type of adjustment is done in real-
time and does not require any method of automatically 
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determining worker quality. For real-time 
crowdsourcing tasks, this means increasing accuracy 
without adding additional response time. 

For tasks that elicit votes for distinct responses, 
workers can be asked to rank their choices (Borda 
count), or otherwise use a voting system that has them 
rate multiple options. This can be seen as converting 
the task to a multi-variable averaging problem, where 
each option’s score is being averaged. Combining the 
answers will result in a crowd ranking of options. 
Workers can vote their selection higher and reduce the 
average ranking of others they believe to be incorrect. 
The higher an incorrect answer appears in the crowd 
ranking, the lower a worker will rate it in order to 
reduce its likelihood of winning. While this will enable 
correction, it should be noted that this type of voting 
scheme also allows for final choices that are not the 
selection of any single worker. For instance, if half of 
workers rank three options in the order 1,2,3 while the 
other half rank them 3,2,1 then option 2 will win even 
though it was no ones top choice. For most tasks this 
does not detract from the reliability of the final answer. 
This type of voting is often considered more reliable, 
and as such is used by many large-scale institutions1. 

Although we focus on cases where large crowds are not 
available, the ability of self-correction to be applied in 
both of these types of task allows for most current 
crowdsourcing tasks to take advantage of this.  

                                                   
1 For example, some sports leagues such as the NCAA use large 

crowds and have contributors provide rankings in this way 

Initial Tests 
To test self-correction, we implemented a simple web-
based game in which workers try to navigate a cursor 
through a series of barriers, each containing small 
openings, by controlling the horizontal position of the 
cursor. Figure 1 shows the game presented to workers. 

In order to compensate for other workers, it must be 
possible for high quality workers to view the status of 
the crowd decision. That way, they can understand the 
need for and effect of overshooting. Each worker is 
shown both the position of the crowd and the worker’s 
individual cursor. The position of the crowd cursor was 
determined by averaging all of the worker positions. 
Using the left and right arrow keys, workers were able 
to move their cursor horizontally to find the best choice 
of position for both the crowd cursor and/or their own 
to make it through the opening in the next barrier.  

Tests were run using workers from Amazon’s 
Mechanical Turk service, with two different payment 
schemes. In the first, workers were paid one cent per 
barrier for each getting their own cursor through the 
opening, and two cents for each time the crowd’s 
cursor made it through an opening. In the second, we 
did not pay workers unless the crowd cursor made it 
through. As a control, we ran one set of each test 
without the crowd position visible to workers and only 
rewarded workers based on their own cursor position.  
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Figure 1. The test interface from the perspective of a single worker. The grey barriers move from the top of the screen 
to the bottom, at which point the cursors either collide (task fails), or pass through the opening (task succeeds). 
Workers were asked to control the lightly shaded cursor using arrow keys. The position of the crowd cursor (dark red 
block) was calculated by averaging the individual positions of all connected workers. The worker in the figure is trying to 
overshoot the correct answer (position 3) to pull the crowd cursor toward the opening.

Observations 
Our initial results showed that Mechanical Turk workers 
often connected and remained mostly idle, making the 
overall improvement we saw not statistically significant. 

We found that a subset of workers attempted to correct 
for the errors of others. However, the compensation 
needed to elicit this behavior was higher than that 
needed to simply recruit workers to control their own 
cursor. As such, workers participating in the first set of 

trials resorted to focusing on their own cursor. Workers 
in the second trial who first tried to overshoot 
abandoned the task quicker than those who did not. We 
believe this is due to a disconnect between the rewards 
given to users and their level of effort. 

Besides the difference in motivating price, we also 
found that workers needed a clear understanding not 
just of how the system derived the crowd position but 
also of how their decision was affecting the crowd. 
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Future Work 
Our initial work has shown that self-correcting behavior 
can be elicited in the crowd. It has also demonstrated 
that there are additional concerns for the design of the 
interface, beyond those of the original task. 

Design 
Designing interfaces that allow workers to see enough 
about other user’s inputs to correct for them, but do 
not enable them to collude in a way that would 
undermine the motivation scheme of the system (such 
as agreeing on a single answer just to get paid) is 
difficult. Allowing users to see the current final 
response in a task using averaging enables users to not 
only correct, but also to agree on to the answer if 
identifying the answer is easier than solving the 
problem (which is not the case in our test). Also, when 
trying to adapt these methods to work with any task 
with no external metric, concerns arise that presenting 
the group decision reveals what will be considered the 
‘best’ answer by the system. 

Motivation 
Our approach also introduces additional ambiguity into 
the system, since we discourage high quality workers 
from converging to the correct answer. However, it 
may be possible to use this to identify workers who are 
helping to correct the answer based on behavior. This 
would provide a means of rewarding workers based on 
quality, even though one was not initially available. 

Future Tests 
Workers in our tests found the results of making 
corrections to be too uncertain to make it worth it to 
commit to influencing the crowd cursor position over 
their own. This problem is similar to the Stag Hunt 

problem from game theory, in which players are 
guaranteed a small reward individually, but a larger 
one if they can all agree on an action. In order to fix 
this, future tests will both increase the reward for the 
crowd’s success, and make it clearer what current 
influence a worker’s current action is having on the 
crowd cursor, instead of only showing the aggregate 
position of the crowd as we do now. We will also focus 
on the case were workers are only paid if the crowd 
succeeds in passing through the barrier. This is also a 
better analogue to real tasks, where it may not be 
possible to identify when a single worker succeeds. 

New Methods 
It may be possible to enable stronger control of the 
crowd decision. For example, the range of the options 
limits the our method of skewing answers since the 
amount one worker can skew a decision is at most half 
the size of the total range. However, by artificially 
extending the range of options (i.e. symmetrically 
doubling the initial range), it may be possible to give 
workers the ability to move the crowd anywhere in the 
actual range. Final answers can be computed by 
mapping the new range back to the old. 

Background 
Previous work has explored using workers to correct for 
the errors made by others. The ESP Game [5] had 
workers agree on the content of an image before 
accepting a label as correct. We start with simultaneous 
job complete as a basis for self-correcting tasks. 

Soylent [1] uses groups of workers to check the error 
finding and corrections performed by other groups. The 
find-fix-verify process can be seen as a non-real-time 
version of self-correction. It is important to note that to 
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accomplish this, Soylent enforced a pattern to extract 
the behavior, and did not rely on the individual quality 
of workers. Our method aims to accomplish this by 
using self-selecting groups drawn from the same crowd 
by providing appropriate information and motivation. 

Massively Multiplayer Pong [3] uses a similar control 
scheme to our test game. Players each control a 
“paddle” in a game of pong. Players are broken up into 
two teams, and the position of each team’s collective 
paddle is determined by the average position of all of 
the members of the team. Players are able to see the 
position of all players in the game, and the crowd as a 
whole. We expect that self-correction did take place in 
this setting, but no study of it was done performed. 

Legion [2] is a system that enables continuous real-
time control of existing interfaces. Legion uses input 
mediators to combine the input of multiple users in 
real-time. It has been used to control interfaces for a 
wide range of tasks, including robot navigation, word 
processing, support for predictive keyboards, and 
activity recognition. Currently, input is collected from 
workers and merged over very short time spans in 
order to simulate continuous control by a single user. 
There is also no external metric that can be used to 
determine if the current actions will lead to the correct 
result prior to the task ending. In the future, we will 
extend this continuous real-time platform to take 
advantage of self-correcting crowds. 

Conclusion 
We have presented idea of self-correcting crowds, and 
methods that use workers’ own ability to identify invalid 
input, before a final decision is reached, to correct 

mistakes. This can be used to improve the reliability of 
real-time crowdsourcing by compensating for the input 
of low quality workers even using small crowds, and 
without adding significant delay. 

Depending on the type of task, we can either ask 
workers to directly compensate for others, or introduce 
voting systems that allow the same behavior. We have 
also discussed how future modifications to voting 
schemes, such as artificially increasing the range of 
choices, may lead to better control. Furthermore, it 
may be possible to use this new worker behavior to 
identify high quality workers in a crowd. 
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