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ABSTRACT
Crowdsourcing has been effectively applied to many difficult
problems beyond the capabilities of current automated sys-
tems. Many such problems are not only difficult to solve, but
their solutions are also difficult to verify. Absent an evalua-
tion metric for automatic verification, a common approach is
to have crowd workers not only solve problems but also ver-
ify solutions using a collective intelligence model. Optimiz-
ing workers’ responses in this situation presents difficulties,
as does optimizing with respect to both speed and accuracy
simultaneously, as one is a constraint on the other. In this
paper, we introduce HiveMind, a game-theoretic model of
collective-intelligence crowdsourcing that addresses response
optimization at the individual worker level with respect to
both speed and accuracy. In addition to inferring worker com-
mitment level, HiveMind allows task creators to tradeoffs be-
tween low crowd participation and excess noise by tuning the
level of convergence. We discuss how this model can be used
to motivate workers for general continuous real-time tasks
of unbounded length using a reputation system and how to
identify consistent leaders in these domains. We also explore
expert-answer elicitation which requires a significant degree
of divergence to attain a set of more varied richer responses,
and present a solution using a specialized aggregate function
within HiveMind as a framework. This enables systems that
seek to elicit different sets of results from crowds (each with
their own idiosyncrasies) to all use a single framework.

INTRODUCTION
Recent crowd-powered systems have brought crowdsourc-
ing to bear on problems that require accurate, real-time
responses. VizWiz lets visually-impaired people ask the
crowd questions about their visual environments (Bigham,
Jayant, Ji, Little, Miller, Miller, Miller, Tatarowicz, White
& Yeh 2010), Legion puts the crowd in control of exist-
ing desktop user interfaces (Lasecki, Murray, White, Miller
& Bigham 2011), Scribe enables real-time captioning of
speech by non-experts (Lasecki, Miller, Sadilek, AbuMoussa
& Bigham 2012a), and Adrenaline lets the crowd interac-
tively select the best frame from a video sequence for bet-
ter photography (Bernstein, Brandt, Miller & Karger 2011).
Such systems not only need to encourage workers to respond
quickly but also accurately. HiveMind provides a formal the-
oretical model to address this problem.

Optimizing speed and accuracy is inherently difficult since
one is a constraint on the other. We define a collective intelli-
gence (CI) metric as the aggregate of the crowd’s responses,
instead of a static, externally defined benchmark. Using CI

metrics in crowdsourcing systems make optimizing both di-
mensions additionally problematic since responses are eval-
uated by a fluid metric. Crowdsourcing tasks typically use
CI metrics as these play the primary strength and purpose
of crowdsourcing: CI tasks include image-labeling(von Ahn
& Dabbish 2004a), checking websites for qualitative content
such as bias or hate speech or just situationally-inappropriate
content(Attenberg, Ipeirotis & Provost 2011, Aral, Ipeirotis &
Taylor 2011), and relevance of search engine results(Alonso,
Kazai & Mizzaro 2012). With HiveMind, we present a the-
oretical framework for crowdsourcing tasks that solves this
problem by motivating workers to optimize their own indi-
vidual responses with respect to both dimensions. Individual
workers are optimally suited to evaluate their own abilities
with respect to the task at hand, and hence establish their op-
timal time for an appropriately accurate answer. HiveMind
consists of a selection mechanism that elicits the measure of
a worker’s commitment to a given task in order to select an
optimal set of workers, and an optimizing aggregate mecha-
nism that promotes fast, accurate responses that converge to a
collective answer. The application of game theory and mech-
anism design on problems in crowdsourcing is not without
precedent(Chawla, Hartline & Sivan 2012).

Using a CI metric also makes systems especially susceptible
to the crowd’s idiosyncrasies: Certain crowds could exhibit a
greater-than-expected reticence to submit responses and may
need encouragement, or you could have the reverse problem
with excess noise, and may want the crowd to exercise greater
reserve in responding. HiveMind’s mechanisms allow task
developers to solve these problems by choosing values on a
continuum. This also allows developers to measure the effects
of a single variable change in the same framework making
comparison of different cases more accurate.

HiveMind handles both real-time and non-real-time tasks,
and promotes the desired behavior in the crowd – to find a bal-
ance between the quality of the responses provided, and the
time required to generate them. Additionally, we explore the
problem of expert-answer-elicitation in CI systems which, by
definition, have a significant democratic component and thus
are inherently vulnerable to a majority effect where workers
tend to veer their responses towards their notion of the col-
lective answer. We solve this problem by using an aggregate
mechanism that builds on Pivot, motivating ’expert’ workers
to fight this majority effect and submit their true responses
even when they differ greatly from the collective answer. Fi-
nally, we discuss mechanisms that are able to better handle
real-time and continuous crowdsourcing domains.



BACKGROUND
HiveMind is related to (i) crowd-powered systems that en-
gage workers for longer periods of time (such as those using
real-time work from the crowd) and (ii) game theoretic mod-
els that have been applied to crowdsourcing.

Human Computation
Human computation was introduced to integrate people into
computational processes to solve problems too difficult for
computers to solve alone, but has not been applied to real-
time control problems. As convenient means of getting access
to human computation, many approaches use crowdsourc-
ing, which recruits several workers to contribute to the task.
Crowdsourcing has been shown useful in writing and edit-
ing (Bernstein, Little, Miller, Hartmann, Ackerman, Karger,
Crowell & Panovich 2010), image description and interpre-
tation (Bigham et al. 2010, von Ahn & Dabbish 2004b), and
protein folding (Cooper, Khatib, Treuille, Barbero, Lee, Bee-
nen, Leaver-Fay, Baker, Popovic & Players 2010), among
many other areas. Existing abstractions focus on obtaining
quality work, and generally introduce redundancy and layer-
ing into tasks so that multiple workers contribute and verify
results at each stage. For instance, guaranteeing reliability
through answer agreement (von Ahn & Dabbish 2004b) or
the find-fix-verify pattern of Soylent (Bernstein et al. 2010).

Several systems have explored how to make human com-
putation interactive. As an example, VizWiz (Bigham et
al. 2010) answers visual questions for blind people quickly. It
uses quikTurkit to pre-queue crowds of workers from Ama-
zon’s Mechanical Turk so that they will be available when
needed. For instance, the ESP Game encouraged accurate
image labels by pairing players together and requiring them
both to enter the same label, although ESP Game players
could also be paired with simulated players (von Ahn &
Dabbish 2004b). Seaweed reliably got Mechanical Turk
workers to be available at the same time to play economic
games by requiring the first worker to arrive to wait (gener-
ally for a few seconds) (Chilton 2009).

Recent crowd-powered systems target quick responses by
pre-recruit workers who are then kept on standby until they
are needed (Bigham et al. 2010, Bernstein et al. 2011), which
reduces or eliminates the time to recruit workers. Latency
is thus determined by how quickly workers choose to com-
plete their task. While current models sacrifice accuracy for
latency, HiveMind is designed to encourage optimization of
both accuracy and latency.

Continuous Real-time Crowdsourcing
Another approach to soliciting real-time input is to maintain
worker engagement in a task. This allows systems to benefit
from repeated observation of the same workers and allows
workers to exercise longer-term strategies. For instance, the
Legion system connects crowd workers to existing desktop
user interfaces via a real-time feedback loop for the dura-
tion of an interaction (Lasecki et al. 2011). Input from mul-
tiple individual workers is aggregated into a single control
stream by using worker responses to select the ‘best’ answer

in real-time. Legion has been used to reliably control a vari-
ety of interfaces requiring continuous real-time input, rang-
ing from robot navigation to document editing. Similarly,
Legion:Scribe uses multiple workers to perform a caption-
ing tasks better than any constituent individual could have by
synthesizing the workers partial captions into a single stream
(Lasecki et al. 2012a). Legion generally motivates the crowd
well, but requires tasks to be of fixed length because work-
ers are only rewarded only when the task is completed. In
this paper, tasks in HiveMind are framed as atomic, with a
single collective answer per task aggregated from one input
from each worker. However, HiveMind supports chaining
atomic segments together in a continuous-task setting, which
enables application to continuous real-time tasks. Segment-
ing of continuous tasks using the crowd has been performed
by Legion:AR, using reliable groups of workers segmented
and labeled a video for activity recognition (Lasecki, Song,
Kautz & Bigham 2012b). HiveMind provides a means of mo-
tivating more general crowds for such tasks.

Game-theoretic Models
Mechanism design is an area of game theory that focuses on
structuring games or situations that elicit specific responses
from players (participants in the situation - workers, in our
case) thus yielding desirable outcomes. The players are as-
sumed to be rational, that is, players will always act to maxi-
mize their utility.

The Confidence mechanism in HiveMind accepts workers’
bids as a measure of their commitment to the task 1. Another
game-theoretic approach to response-optimization is getting
workers to increase their confidence levels by solving re-
peated tasks (Karger, Oh & Shah 2012).

HIVEMIND
HiveMind is a theoretical framework for crowdsourcing sys-
tems that ask workers to answer questions. A worker can
agree with (vote for) another worker’s proposed answer (here-
after referred to as playing A) or propose one of their own
(hereafter referred to as playing P). We use a collective in-
telligence model where the system uses a voting function to
evaluate responses and converge on a collective final answer
- as opposed to using an external benchmark. HiveMind in-
corporates a staggered model, for promoting convergence of
similar answers to a single choice. HiveMind implements two
mechanisms, working together in a shared memory space:
The Confidence mechanism selects the best workers for a
task, and the Pivot mechanism motivates them to optimize
their answers with respect to accuracy and speed. We as-
sume workers are risk-neutral, rational, have quasi-linear util-
ity functions and have no knowledge of the specific parame-
ters of the task a priori.

Staggered Model
1Note that the model implicitly assumes the existence of a trust-
worthy online escrow mechanism. Work on this problem has been
done by Witkowski, Seuken and Parkes (Witkowski, Seuken &
Parkes 2011). Other work also examines the issues affecting trust-
inducing mechanisms in an online setting (Witkowski 2011).



Figure 1. Design of the HiveMind model. The first phase of the default
mechanism (Confidence mechanism [CM]) selects appropriate workers,
while the second (Pivot mechanism [PM]) aggregates input into a single
final answer.

HiveMind uses a staggered or step-wise model for aggregat-
ing answers. Every worker entering the task (except those in
the initializing set) receive a set of response-choices, called
a step, which they can agree with or propose a new response
to. Votes over these choices invariably weed out responses
yielding subsequent steps that culminate in a final collective
answer. For purposes of illustration, the voting function is
taken to be plurality. An initializing set of workers seed the
first step with responses. Each set of choices incorporates
two sets: The main set consists of answer proposals which
have the greatest number of votes in agreement, and the sug-
gestion set consists of the most recently proposed answers.
Choices in the suggestion set get promoted to the main set
once they acquire enough votes. Each choice in both sets is
timestamped, which is used as a tiebreaker.

The size of the main set (hereafter referred to as Nm) is de-
termined at implementation. Calculation of an optimal Nm
depends on a number of factors: too few choices increases
the probability of a worker receiving a positive reward by
agreeing with an arbitrary choice, but too many choices may
hamper reaching a consensus.

The suggestion set acts as a controlled group communication
channel. Each time an answer is submitted, it is displayed
for at least some period of time in the suggestion set. This
ensures workers view all submitted answers and avoids the
case of a new answer never being seen because all elements
in the main set have more than one vote. The size of the
suggestion set can vary, or even include all suggestions that
have been made. However, new proposals must always be
accommodated for the Pivot mechanism to work. We refer to
the size of the suggestion set as Ns. Note that the probability
of agents answering at exactly the same time increases with
the density of agents per step, which affects the sizes of the
main and suggestion sets.

Jogging 1
Running 1

Jogging 1
Running 2
Sprinting 1

Jogging 1
Running 4
Sprinting 2

Step 1: Workers 1,2 Step 2: Workers 3,4 Step 3: Workers 5,6,7

Figure 2. The staggered model used in an activity recognition domain.
In the first part, workers w1 and w2 create answers. Next, w3 votes for
’Running’, while w4 creates another new answer. Finally, w5 and w7

vote for ’Running’, w6 votes for ’Sprinting’. At the end of the round,
’Running’, created by w2, wins.

Worker Confidence Mechanism
The function of the Confidence mechanism for a given task
is to select workers inclined to put in sufficient effort. The
problem with implementing such a metric is enforcing com-
mitments. For example, we may ask workers for the number
of minutes they agree to put into a task and select those giv-
ing the highest numbers; however, the commitment is not en-
forceable and does not take into account efficiency. This leads
to two of our central intuitions: (i) the only person who truly
knows the amount of effort going into a task for any worker
is the worker himself - thus any commitments must be self-
enforced, and (ii) it follows that the best person to optimize
the efficiency of any worker is the worker himself - the main
tenet of the Pivot mechanism.

The Confidence mechanism captures the first intuition by re-
quiring workers to stake an amount on the outcome of the
task. A worker i is required to bid an amount bi in a range
of values specified at implementation. The mechanism parses
the bids into three classes: Class A is the highest set of bids
(defined here as the top quartile of bids for purpose of illus-
tration). Class B corresponds to workers in the next-highest
of bidding range. The last class consists of all others.

Classes A and B are characterized by two values that specify
their range. The lower threshold b for any class X is defined
such that ∀bi ∈ X, bt ≤ bi, also defined as the lowest value
in a set which is also the stake for selected workers in a class.
The upper threshold, or bmax for class A is the range maxi-
mum, and for class B, bmax(B) < btA . The Confidence mech-
anism follows a second-price sealed-bid auction model where
no worker can predict, or have any significant control or sig-
nificant predictive ability over their stake or reward, save the
knowledge that their stake is at most their bid. Thus workers
bid the highest amount they are willing to stake.

Confidence Mechanism: Worker Strategy
Every worker has knowledge of the bid range (bmax for class
A) and their own bid. The exact parameters of any class and
the bids of other workers are both hidden from workers, but
they are aware that the highest bidding workers are selected.

Three factors lead to our optimal result in selecting workers:
(i) the presence of a stake, (ii) the lack of significant con-
trol (and thus absence of prediction) over the stake or reward,
and (iii) the two-class selection. Workers, if selected, have
a staked amount, but in the absence of a 2-class model, the
Confidence mechanism selects only those workers who wish
to be selected, but are willing (rather, have no choice but) to



stake the maximum. Therefore, these workers will be moti-
vated to bid the range maximum as well. The addition of a
second class adds nuance to the rationale behind individual
bids: workers who wish to be selected, but who do not wish
to bid the range maximum, will bid the highest amount they
are willing to stake, since the stake b ≤ bi.
Workers cannot make predictions of their exact stake or re-
ward at the time of the bid: this requires incorporating work-
ers’ beliefs about their expected payoffs at the time of the bid
(at which time they have no knowledge of the specific task,
and thus confidence in their abilities to handle it2. However,
as the selection metric is curved, their chance of being se-
lected over the bid range is an increasing function. This may
cause workers to slightly increase or shade their bids upwards
though this does not hurt our selection model. The Confi-
dence mechanism thus motivates workers to bid the maxi-
mum amount they are willing to stake.

Selection of two classes (with payoffs specific to each class)
also allows nuance when dealing with an additional crowd-
sourcing parameter not incorporated currently in HiveMind -
a task budget. While our model does not deal with budget
constraints, the related ramifications in a two-class model of
selected workers are worthy of exploration.

PIVOT MECHANISM
The Pivot mechanism is an optimizing aggregation mecha-
nism, used to encourage the optimization of both speed and
accuracy, that extends the Confidence mechanism. In the
HiveMind model, workers can respond to their given task ei-
ther by agreeing with (voting for) a step-choice or proposing a
new choice. Rather than choosing the action that best reflects
the most correct answer, workers can play suboptimal actions
due to: (i) noise introduced when workers indiscriminately
propose answers to cause vote splitting and discourage con-
vergence, and (ii) the majority effect, in which workers are
discouraged from proposing legitimate responses since they
perceive existing responses to have a head start in votes. The
Pivot mechanism first defines a disproportionately larger re-
ward for playing propose than playing agree. It attempts to
solve these issues by parameterizing threshold values for the
feasibility of playing agree or playing propose over staying
out, and playing either propose or agree over the other.

Worker actions: The set of actions for a worker i has two
dimensions: With respect to choices: Workers can play A ,
can play P, or can choose to stay out.

Time: Workers can answer immediately (at the worker’s en-
try time, t0) or wait. In short, they can answer at any time
t such that t0 < t < taskend (the ending time). The earli-
est time a worker can fully evaluate their choices and answer
accurately/correctly is designated as t1.

Confidence: When deciding on their course of action, a
worker evaluates their abilities specific to the task as well as
external factors such as the payoff functions. The confidence

2This holds by assumption, but may not be true in specific imple-
mentations. For example, workers may have some task or domain
knowledge from prior experience with similar tasks.

Action

Agree Propose Do Not Play

Win Lose Win Lose
Prob = μ
Rwd = b

Prob = η
Rwd =(b/α)

Rwd = 0

Prob = 1 - η
Rwd = -(b/α)

Prob = 1 - μ
Rwd = -b

Figure 3. HiveMind action tree for each worker.

of a worker to play an action and win is defined as two vari-
ables: (i) µ = [0, 1] is the confidence level any individual
worker has they will play agree and win, and (ii) η = [0, 1]
is the confidence level any worker has of playing propose and
winning. While quantifying confidence for workers is infeasi-
ble in general, it is possible for a very narrow case: a worker
can quantify only their own confidence level for a specific
task. Our approach is sound because our confidence variable
only shows motivation for workers’ own actions.

Payoff Functions: By the selection mechanism, each se-
lected worker stakes amount b; we use a variable α ∈ [0, 1]
to make the reward for playing P relatively greater than the
reward for playing A. For each worker over their actions is
the following:

payoffA = µαb+ (1− µ)b
payoffP = η bα + (1− η)b
payoffnone = 0

Case 1: A is feasible iff payoffA ≥ 0
=⇒ µb+ (1− µ)(−b) ≥ 0
=⇒ µ ≥ 1

2

Case 2: Play propose is feasible iff payoffP ≥ 0
=⇒ η bα + (1− η)(−b) ≥ 0
=⇒ η ≥ α

1+α

Case 3: A player will (weakly) prefer playing propose over
agree iff payoffP ≥ payoffA
=⇒ η bα + (1− η)(−b) ≥ µb+ (1− µ)(−b)
=⇒ η ≥ 2µα

The variable α sets the threshold gap between µ and η for
playing propose over agree, as well as the threshold value
for η for playing propose to be feasible. The example below
shows, for various values of α, corresponding threshold gap
values between µ and η and threshold values for η:

α =



0 η ≥ 0; η ≥ 0

1
4 η ≥ 1

2µ; η ≥
1
5

1
2 η ≥ µ; η ≥ 1

3

3
4 η ≥ 2

3µ; η ≥
3
7

1 η ≥ 2µ; η ≥ 1
2



…
Negative Positive Zero

Figure 4. Expected payoffs over time. From time t to t1 the agent has
negative expected payoff, the optimal payoff comes at time t1 then de-
clines over time until the end of the task, at which point it is 0.

Therefore, α can adjust for confidence inflation of one confi-
dence variable with respect to the other, or, in particular, the
lead µ may have over η due to the majority effect3. Noise
can be eliminated as well for higher values of α that increase
the threshold gap between η and µ, thus playing P is feasible
only for high values of η (Note the gap values subsume the
threshold values for η for all cases of µ ≥ 1

2 ).

Equilibria: We have multiple symmetric Nash equilibria
such as the following for a crowd of n workers, α = 1

2 and a
step-size of 2:

α = 1
2


η ≥ µ play P
η ≤ µ and 1

2 ≤ µ play A
else none

σ(1) = P
σ(2) = P
...
σ(n) = A

Worker Strategy Across Time
Consider the actions of any worker with respect to time: The
worker can play at any time t such that t0 ≤ t ≤ taskend.
We take three possible cases with respect to t1:

Case 1: At any time t < t1 the worker receives a negative
payoff (refer to section Freeloader’s Payoff), thus playing at
t < t1 is a dominated strategy and so is never played.

Case 2: playing at t = t1 < taskend, the worker has the
following payoffs:

payoffAt1
= µaαbm + (1− µa)bt where α ∈ [0, 1]

payoffPt1
= µpbk + (1− µa)bt

For the purpose of illustration we assume time to be in dis-
crete units t1,t2,taskend.

Case 3: We use a value δ ∈ (0, 1) to discount future payoffs
for times tn > t1 as follows:

payoffAtn
= δn−1 payoffAt1

payoffPtn
= δn−1 payoffPt1

As n→∞, δ → 0

Other cases: For any t ≥ taskend the worker cannot play,
and therefore their payoff is always 0.

3Any step-choice comes with at least one vote and hence any
player’s confidence levels over these answer choices is inflated.

The discount factor δ captures the notion of the worker’s un-
certainty of when the task ends. Thus, for any value, the
worker maximizes their payoff at t = t1. Therefore playing
at t1 is a weakly dominant over any other strategy.

Freeloader’s Payoff
For our model to be robust, we cannot allow workers to gain
rewards without any effort. That is, workers cannot freeload,
or select answers arbitrarily as a feasible strategy. We de-
fine freeloaders as workers who select an answer (to agree
with) arbitrarily from the list of available choices at any given
step. In agreeing with an answer, a freeloader can agree
arbitrarily with any of (total number of choices at a step
c = nummainset + numsuggset) answers and can answer
at any time between t0 and taskend. However, calculating
a worker’s expected payoff for freeloading at any step in the
task would depend on knowing not only the number of pro-
posed answers in the entire task, but their distribution across
all future steps, which are both unlikely to be known. Thus,
not only is this information not available to the worker, but
it is not available to the mechanism. The best case for the
freeloader occurs when they are fortunate enough to vote on
an answer in a step where the winning answer is included
as a choice. We again define b as the amount staked by the
worker, c as the number of choices and r as the maximum
reward value for agreeing with the correct answer: r = bẋ
where x > 0. We then select c and r such that the freeloader’s
expected payoff is r/c−|b(c−1)/c| < 0 making freeloading
a dominated strategy for any worker. Adjusting values of c
and r in the mechanism implementation follows intuition as
well: If c is usually low coupled with r being high relative
to the worker’s bet b, then the expected payoff may well be
positive. That is, we want to ensure 0 < x < c − 1. In
other words, if the number of choices in a given step is low,
the probability of choosing a winning answer increases and,
if the reward is decidedly large compared to the amount the
worker bids, his or her expected payoff may be positive.

Expert Mechanism
The Pivot mechanism works for convergence-centric tasks,
but cannot be applied for tasks where workers are expected
to go against the crowd. The confidence levels µ and η in-
corporate both the belief that a choice (or proposal) is cor-
rect as well as that the crowd will support it, with the lat-
ter factor outweighing the former in importance. That is,
η = f(ηint, ηext) where for each worker, confidence levels
over answers attributed to internal metrics and external beliefs
(about the crowd) are presented by ηint and ηext respectively.
Similarly, µ = f(µint, µext). For non-convergence-centric
crowdsourcing tasks where the worker is to propose his or
her best response irrespective of his or her beliefs about the
crowd, we can employ a Kindred Expert mechanism: Con-
sider such a task where the worker currently plays agree (or
has high µ) in two cases: (1) When the worker believes an
answer choice is correct and will probably win and (2) when
the worker believes an answer choice is incorrect but will
probably win. Consider having an expert check the collec-
tive answer as well as all individual answers proposed: the
expert is called in for any given task with a probability p (say,



p = 1
2 for purposes of illustration). The expert can choose to

reject the collective answer on evaluation and reward another
individual proposed answer. If the worker believes the expert
will be consulted for the current task, he believes his proposed
answer will be recognized as correct by the expert (even if
the crowd chooses not to do so), and so plays propose. Thus
we counteract the belief individual workers have about their
crowd with beliefs about another crowd (the expert or panel
of experts). However, this could go horribly wrong: It may be
that in addition to negating case(2), beliefs about the expert
could negate case(1) (i.e., the worker could believe the crowd
is correct, but may believe the expert will not recognize it).
Thus, for the expert solution to work, a worker’s belief about
the expert must be consistent with the worker’s notion of a
better answer (this is our assumption). That is, we provide no
other information on the expert (no definition) except to state
that he or she is an expert. The definition of the expert, then,
is left to the worker, which we assume will be consistent with
the worker’s notion of a better answer. Thus a phantom expert
must be used so no further beliefs can be formed about them.

Using such deception mechanisms in proposal-elicitation
tasks is not sustainable. Given enough time, even significant
incomplete information, deception mechanisms will eventu-
ally cease to work thus requiring fresh solutions to proposal-
elicitation tasks in a CI model.

PROPOSAL-ELICITATION MECHANISM
Extracting collective answers from the crowd provides a re-
liable means of finding correct answer given that a majority
of workers can generate or identify the correct answer. How-
ever, for many domains, knowledgeable crowds are hard to
find. In these cases, we want to be able to leverage a smaller
set of workers who may still know the correct answer. Elic-
iting, then recognizing, such answers is difficult in CI sys-
tems, since workers are generally encouraged to agree with
the majority in order to be rewarded as is the case in the Pivot
mechanism. We present a solution to this elicitation problem:
Our solution enables workers to fight the majority effect and
give his or her best response - all within the framework of
a democratic aggregate function. In task-models with vari-
able entries and exists for workers, our approach attempts to
correct the initial advantage workers may obtain in proposing
at the early stages of the task, which acts as a deterrent for
workers entering in the later stages to propose.

We follow the staggered model of Pivot where workers are
presented with a step (set of response-choices), and can either
agree with (vote for) a choice, or add to the choice-set by
proposing a new answer.

Structure: Workers in this model are divided into three sets -
The head set, an initializing set, where workers may only pro-
pose new answers, the main set where the responses-choices
evolve by workers agreeing with or proposing choices, and
the tail set, where workers provide only votes over the final
set of choices. The actions of playing agree and playing pro-
pose are denoted by A and P respectively.

In the head set, workers can only propose responses. These
responses are used to seed the first step of choices and are

given a fixed amount of time and a fixed reward for any non-
null response.In the main set, the actions available to workers
are {A, P, none}. The choice-set of responses evolve by ac-
tions of workers here, and the expert(s) are assumed to be
in this set, thus the main set is chosen to be large relative to
the size of the headset and tail set, so the probability of an
expert existing in this set is high. Unless specified otherwise,
references to workers refer to those in the main set.

All proposals with their scores are recorded, and every worker
is presented with a step that is, a snapshot in time of the top k
choices, initialized for every worker entering the task. Every
worker sees only one such step and can submit only one re-
sponse. The worker can choose to act any time until the end
of the task. A payoff function, similar to one used in Pivot, is
used where winning when playing P yields a disproportion-
ately large reward relative to winning when playing A.

Our model does not require a specific voting rule for assig-
nation of points, but we use plurality for purposes of illus-
tration. For every worker, agreement with or proposal of any
answer in the step assigns 1 additional point to it, with an
implicit assignment of 0 additional points for all other step-
choices. The score for a proposal submitted by any worker i
is: scorei = points received

points possible . All initial proposals are added to
the current step, but not scored until a predetermined number
of workers vote over it. We refer to this number as the block
size, or bl. This solves the problem of all proposals initially
having a score of 1

1 . Depending on the number of votes re-
ceived by each initial proposal during their first bl votes, they
are either voted out or voted in. The final set of choices at the
end of main set is presented to the tail set, whose function is
to cast a final set of votes over the available proposals. For
proposals cast with < bl workers remaining in main set, all
such proposals are added to the final step of choices with a
score equal to the smallest score in the final step. The tail set
consists of bl workers, each having a vote equal to g

bl , where
g = maxfinal − minfinal. Thus it is possible for every
choice in the final step to win.

Analysis: Our scoring function utilizes relative vote points
instead of a traditional absolute vote count. Thus a choice
received 20 out of 30 possible votes scores higher than one
receiving 50 out of a 100 possible votes (for bl ≤30) even
though the latter proposal has more absolute votes. This
also negates any advantage earlier entrants have over later en-
trants, which is especially relevant in task-models with vari-
able entries and exits. Additionally, the notion of a block size,
bl, solves the problem of an initial score of 1

1 propelling the
proposal to the top when tallying the scores of all choices -
with a block size, a score for any proposal is not calculated
until points possible = bl. This does yield an additional fair-
ness problem that may affect workers’ motivation: very late
entrants may face an audience numbering less than the block
size, and thus have no hope of ever being selected. The exis-
tence of the tail set solves this: It allows every worker’s pro-
posal, entering at any time, the possibility of winning. Within
this model, we can make the case that the expert worker will
act as follows: He or she will propose if (i) their prior ηint
and ηext are both high, and (ii) their ηint is high but their



prior ηext is low. In other words, any worker’s confidence
level in their proposals no longer depends on the absolute
number of workers backing other answers or their proposal.
A minimum number of workers voting over their proposal is
required, which is guaranteed by the existence of the tail set.
Thus, every proposal, even those entering late, is given the
opportunity to win.

This functionality is crucial to answer-elicitation - as only
proportions of votes cast are used to compute the score (as
opposed to the traditional approach of counting votes), you
could conceivably have a proposal with a small number of
votes score higher than proposals with far greater number of
votes, the crux of the worker’s motivation in combating the
majority effect.

CONTINUOUS REAL-TIME TASKS
Many human computation tasks are not easily divisible a
priori. Many are better completed as continuous processes,
but engaging workers over indefinite periods introduces new
challenges. For instance, workers need to be compensated
for their work, but doing so fairly requires knowing how
much work was actually done. One way is to divide work
into subtasks of approximately equal size and compensate ac-
cordingly. Subtasks can be labeled by adding an operation
to continuous tasks for users to signal the end of a subtask.
Naively implemented, this would motivate workers to create
short subtasks that can be done frequently.

Using a reputation mechanism can prevent workers from
shortening the task, even when they are paid per-response.
We first give a reputation value to each worker, and set a cut-
off, below which workers may be removed from the task. As
mentioned earlier, the value of a task increases over time as
our confidence in a worker increases, thus workers are mo-
tivated to avoid being removed. We define the threshold σ
to be an acceptable distance from the correct answer (a) as
a fraction of the total time for the subtask. Reputations are
then updated using a weight learning function. Workers are
penalized for the difference in their submission time and the
average of all other workers by a reward function:

reward = 1−
{

0 if |ans− answ| < σ · ans
||ans−answ||

ans otherwise

Since workers cannot observe other workers and each is mo-
tivated to finish as soon as possible, workers will be unable
to reliably agree to submit the end of response task until the
task is actually finished. Workers will be motivated to submit
the end of task response as soon as possible to increase their
chance of answering the next task before its end because their
completion time t0 is shifted by any additional time spent on
the previous task. Thus, workers are motivated to correctly
delimit the subtasks by signaling their true ends, but are not
motivated to take longer than needed.

Finding Leaders
Legion shows that using a single worker elected by the crowd,
called a leader, to directly control a task is an effective

paradigm in continuous control domains. We can use Hive-
Mind to identify leaders by first applying the Pivot mech-
anism to a continuous task, then use the following weight
learning formula to rank workers:

Wt+1 = (1− α) ·Wt + α · taskscore
where α determines how much history should be considered.
We can then select the leader by picking the highest weight.
The final answer selected in each subtask is the one selected
or generated by the leader.

FUTURE WORK
In the future, we plan to evaluate HiveMind in a real-world
setting where workers may have differing motivations and
definitions of rationality. This will require implementations
which effectively communicate the parameters of the task,
and find effective reward values in a variety of domains (since
results will be instance specific). These tests can demon-
strate two key factors: i) workers will complete the tasks with
higher quality per unit of time spent, and ii) adjusting the
value of alpha will be correlated with the size of the resulting
answer-set (number of responses).

It is also possible to probabilistically model workers’ knowl-
edge of their environment and assumptions over incomplete
information. We can then analyze how closely the resulting
Bayesian-Nash Equilibrium matches the HiveMind model.

CONCLUSION
We have described HiveMind, a theoretical framework for
collective intelligence crowdsourcing tasks that optimizes the
tradeoff between speed and accuracy in worker responses,
while allowing task developers to easily adjust the extent to
which the crowd converges to a set of answers by tuning the
value of α. HiveMind incorporates a two-part mechanism
which first finds an optimal group of workers, then uses those
workers to generate and select an answer. The model moti-
vates individual workers to optimize their personal tradeoff of
time and accuracy, thus generating correct answers as quickly
as possible. HiveMind presents a game-theoretic approach to
designing methods of combining worker input in real-time,
which can be useful in a variety of domains where workers
were previously difficult to motivate properly, such as contin-
uous real-time tasks.

From the point of view of task developers crowds are intrin-
sically idiosyncratic, never responding quite the way you re-
quire. The primary contribution of HiveMind is the increased
flexibility it offers task developers in recognition of this: With
the alteration of just one variable, developers can finetune
collective answers received, promoting convergence or diver-
gence, balancing noise with worker participation, inducing
simple responses or rich, complex answers.
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