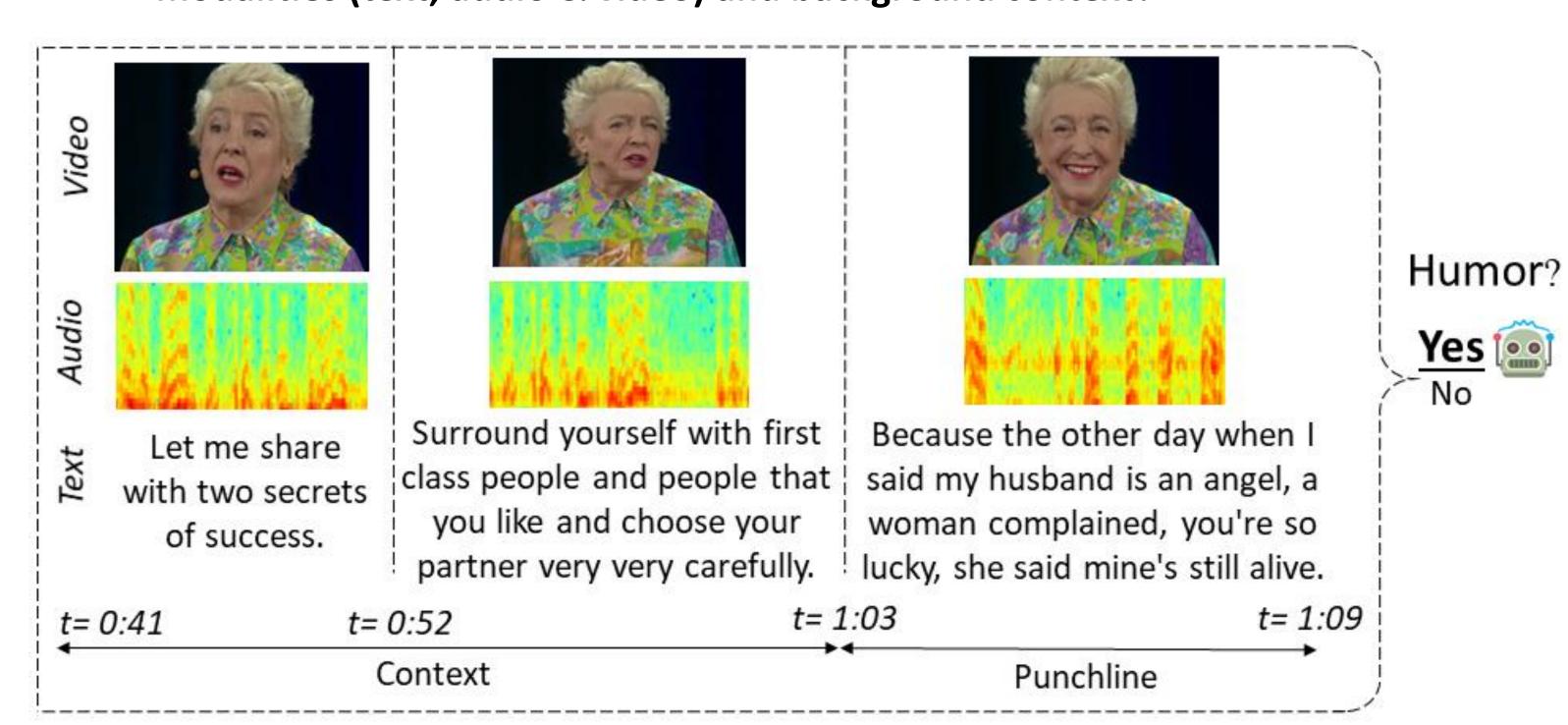


# **UR-FUNNY: A Multimodal Language Dataset for Understanding Humor**






Md Kamrul Hasan\* (mhasan8@cs.rochester.edu), Wasifur Rahman\*, Amir Zadeh, Jianyuan Zhong, Md Iftekhar Tanveer, Louis Philippe Morency, Mohammed (Ehsan) Hoque University of Rochester & Carnegie Mellon University, USA

MultiComp Lab

### Motivation

Can computer recognize the punchline of a joke using different modalities (text, audio & video) and background context?



### **Dataset Overview**

- UR-FUNNY: First multimodal (text, audio & video) dataset for humor detection
- 8257 Humor Instances (video) from TED Talk
- It has **punchline** & background story **context**
- Average duration of each data = 19.67s; context = 14.7s & punchline = 4.97s
- **Diverse** in both speakers (1741) and topics (417)
- Total duration is 90.23 hour

**Publicly** available to download (data + processed features + code)



Link: <a href="https://github.com/ROC-HCI/UR-FUNNY">https://github.com/ROC-HCI/UR-FUNNY</a>

## Dataset Analysis

### **DATA Acquisition**

- Collected 1866 TED talk videos + transcripts
- Audience Laughter markup is used to filter 8257 humorous punchlines from transcript
- Context is extracted from the prior sentences to the punchline
- Negative examples are from same videos (homogenous)
- Force alignment is used to align text, audio & video
- Preprocessed features: text = glove, audio = COVAREP, video=
   OpenFace

### **UR-FUNNY Vs Other Datasets**

| Dataset         | #Pos  | #Neg  | Modality                           | Туре      | #Speaker |
|-----------------|-------|-------|------------------------------------|-----------|----------|
| 16000 One Liner | 16000 | 16000 | { <i>t</i> }                       | Joke      | _        |
| Pun of the Day  | 2423  | 2423  | { <i>t</i> }                       | Pun       | _        |
| PTT Jokes       | 1425  | 2551  | { <i>t</i> }                       | Political | _        |
| Ted Laughter    | 4726  | 4726  | { <i>t</i> }                       | Speech    | 1192     |
| Big Bang Theory | 18691 | 24981 | { <i>t</i> , <i>a</i> }            | Tv show   | < 50     |
| UR-FUNNY        | 8257  | 8257  | { <i>t</i> , <i>a</i> , <i>v</i> } | Speech    | 1741     |

t = text, a = audio, v = video

# 

| in Number of Sentences | Sentence Durati | on in seconds                   |       |
|------------------------|-----------------|---------------------------------|-------|
| General                |                 | Punchline / Context             |       |
| total #video           | 1866            | #sentence in punchline          | 1     |
| total duration (hour)  | 90.23           | avg #word in punchline          | 16.14 |
| #humor instances       | 8257            | avg duration of punchline (sec) | 4.97  |
| #non-humor instances   | 8257            | avg #sentences in context       | 2.86  |
| #sentence              | 63727           | avg duration of context (sec)   | 14.7  |
| avg #word in sentences | 15.15           | avg #word in context sentence   | 14.80 |

(d) Distribution of Punchline (left) and Context (right)

non-humoi

## Contextual Memory Fusion Network (C-MFN)

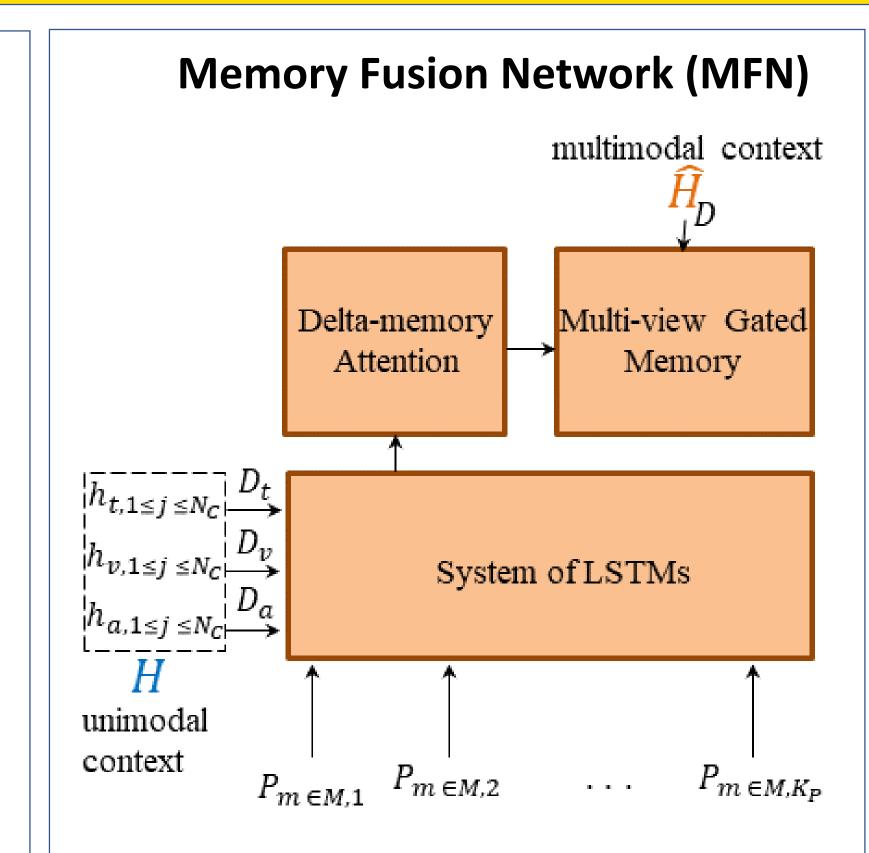
### **Problem Formulation**

Set of modalities,  $M = \{t, a, v\}$ ; t = text, a = audio, v = vision

Each instance,  $I = \{l, P, C\}$ ; l = label, P = punchline, C = Context

Punchline & context have multiple modalities  $P = \{P_m : m \in M\}$  &  $C = \{C_m : m \in M\}$ .

 $C_m = [C_{m,1}, C_{m,2}, \dots C_{m,N_c}]$ ;  $N_c =$  number of context sentences


 $K_p$  = Number of words in the punchline  $K_{C_n}$  = Number of words in the nth context sentence ;  $n \in \{1, N_c\}$ 

# Unimodal Context Network n=1 n=2 $n=N_C$ $h_{t,2}$ $h_{v,2}$ $h_{a,2}$ $C_{t,2,k_{c_2}}$ $C_{v,2,k_{c_2}}$ $C_{a,2,k_{c_2}}$ $C_{a,2,k_{c_2}}$ $C_{t,2,1}$ $C_{v,2,1}$ $C_{c,2,1}$ $C_{c,2,2}$ $C_{c,2,2}$

Three LSTM for summarizing three modalities

# Multimodal Context Network Residual Residual Residual Self-Attention Embedding n = 1 n = 2 $n = N_C$

Transformer encoder creates multimodal context



(e) Ted Talk Categories

LSTM cells & Multi-view memory initialized with unimodal & multimodal context

### **Ablation Study**

### Role of context & punchline

C-MFN (P): This variant uses only punchline; C-MFN (C): This variant uses only context; C-MFN: uses both

### Role of different modalities

(T) only text modality is used; (A+V) only vision and acoustic modalities are used; (T+A+V) all modalities are used together

# Results

| Modality  | T     | A+V   | T+A   | T+V   | T+A+V |
|-----------|-------|-------|-------|-------|-------|
| C-MFN (P) | 62.85 | 53.3  | 63.28 | 63.22 | 64.47 |
| C-MFN (C) | 57.96 | 50.23 | 57.78 | 57.99 | 58.45 |
| C-MFN     | 64.44 | 57.99 | 64.47 | 64.22 | 65.23 |

Performance Metrics: Binary Accuracy

**C-MFN** that uses both punchline and context along with all three modalities give best performance

# Summary

- Humor can be modeled better as multimodal
- Context and punchline are important
- Brings new challenge to Humor understanding by extending the task in multimodal domain

