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ABSTRACT 

Crowd-powered systems have become a popular way to 

augment the capabilities of automated systems in real-world 

settings. Many of these systems rely on human workers to 

process potentially sensitive data or make important 

decisions. This puts these systems at risk of unintentionally 

releasing sensitive data or having their outcomes 

maliciously manipulated. While almost all crowd-powered 

approaches account for errors made by individual workers, 

few factor in active attacks on the system. In this paper, we 

analyze different forms of threats from individuals and 

groups of workers extracting information from crowd-

powered systems or manipulating these systems’ outcomes. 

Via a set of studies performed on Amazon’s Mechanical 

Turk platform and involving 1,140 unique workers, we 

demonstrate the viability of these threats. We show that the 

current system is vulnerable to coordinated attacks on a task 

based on the requests of another task and that a significant 

portion of Mechanical Turk workers are willing to 

contribute to an attack. We propose several possible 

approaches to mitigating these threats, including leveraging 

workers who are willing to go above and beyond to help, 

automatically flagging sensitive content, and using 

workflows that conceal information from each individual, 

while still allowing the group to complete a task. Our 

findings enable the crowd to continue to play an important 

part in automated systems, even as the data they use and the 

decisions they support become increasingly important. 

Author Keywords 

Crowdsourcing; privacy; security; extraction; manipulation 

INTRODUCTION 

Crowd-powered systems have recently become a popular 

way to surpass the capabilities of automated systems in 

many real-world domains. For instance, VizWiz [3] and 

Chorus:View [19] answer visual questions for the blind, 

Legion:Scribe [16] converts speech to text in real-time, 

Shortn [2] rephrases text into a more condensed form, 

Legion:AR [18] recognizes activities it has never seen 

before from video, Adrenaline [1] picks the “best” frame 

from a video, and Chorus [20] is an on-demand personal 

assistant capable of holding two-way conversations with a 

user. Each of these systems uses human intelligence to 

robustly solve a problem that artificial intelligence is not 

yet able to handle. However, doing so requires sharing 

potentially sensitive information with unknown people. For 

example, a photograph of a medication taken by a blind 

person for assistance reading the label (as in VizWiz) may 

include personally identifying information about the user. 

Figure 1 illustrates an example of a task where four workers 

are asked to extract text from an image of a credit card. 

Even if most workers are trustworthy, all it takes is one bad 

worker to steal the card number. Little is known about how 

systems can prevent unintentional extraction of data when 

using human intelligence as a computational resource [8]. 

The success of crowd-powered systems also means that the 

decisions made based on the input of crowd workers are 

becoming increasingly critical. For example, comScore is 

company that provides digital analytics to some of the 

world's largest enterprises, agencies, and publishers. Many 

significant business decisions are made based on comScore 

data, some of which are created using Mechanical Turk 

(www.mturk.com). As another example, Planet Hunters 

(www.planethunters.org) uses crowd input to determine 

where a new planet is most likely to be found, and then uses 

this information to dedicate scarce telescope resources. 
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Figure 1. Crowd-powered systems are vulnerable to two types 

of attacks: unwanted information extraction (left), and 

malicious manipulative control (right). 



Responses collected from workers are used to power 

systems that do language translation [30], search results 

ranking [4], and even fine-grained image recognition [5]. 

With increased reliance on crowdsourcing to make real-

world decisions, the potential for external manipulation 

could become a costly threat. Significant resources could be 

devoted to attacking crowd systems much in the way they 

are currently devoted to influencing search engine rankings. 

The search engine optimization market is estimated at $20 

to $30 billion dollars in the United States alone [28], and 

poses a real challenge for search engines. As crowd systems 

become ubiquitous, they will likewise become targets for 

new types of malicious manipulative attacks, which perhaps 

even use the crowd itself. Figure 1 illustrates how a group 

of malicious crowd workers might convince a hand writing 

recognition crowd system to incorrectly interpret an image. 

This paper lays the groundwork for addressing the threat of 

information extraction and manipulation in crowd systems 

by investigating the potential vulnerabilities of current 

crowdsourcing approaches. It contributes: 

 An overview of the space of potential threats to 

existing crowd-powered systems and types of attacks, 

 Tests that illustrate the viability of using Mechanical 

Turk to recruit workers for malicious attacks, and 

 Ways to use the crowd to self-regulate against attacks 

for high-risk tasks, using various techniques. 

We begin with a discussion of existing crowdsourcing 

practices. While previous efforts have explored how to 

combat worker errors and workers who want to be paid for 

doing as little work as possible, we highlight potential 

threats to crowd-powered systems, such as the extraction of 

valuable information from a task or the manipulation of a 

task’s outcome. We study the feasibility of individual and 

group attacks, and analyze how group attacks can be 

organized by a group of malicious workers or by the hiring 

of workers by a malicious entity. We present the results of a 

study performed on Mechanical Turk with 1,140 unique 

workers that demonstrates the vulnerabilities of the current 

platform to malicious tasks that actively attack another task 

by directing workers. We analyze the behaviors of workers 

in contributing to these threats, and find that while such 

attacks can be successful; some workers are unwilling to 

participate. This suggests there is an opportunity for crowd 

systems to self-regulate to protect themselves, and we 

conclude with a discussion of how future crowd-powered 

systems might be designed to prevent information 

extraction and manipulation. 

PRIOR WORK ON CROWDSOURCING 

Crowdsourcing is a form of human computation that relies 

on a diverse group of nearly anonymous workers with 

unknown skills and reliability to contribute to a larger task 

by completing small pieces of the task called micro tasks. A 

crowdsourcing platform is the system that recruits crowd 

workers and connects these workers with micro tasks for 

them to perform. Within a crowdsourcing platform, a task 

requester is the individual or organization who creates a 

public call (in this case in the form of a description of the 

task) and hires crowd workers.  

Systems that use crowdsourcing are at risk of attack 

because requesters know very little about the workers they 

hire and have limited means for quality control. Here we 

give an overview of what is known about crowd workers 

and how quality control is currently handled. We then 

highlight some of the vulnerabilities of crowd systems and 

discuss existing approaches to thwart malicious workers. 

Understanding Crowd Workers 

Crowd workers are remotely recruited by a crowd platform 

to micro tasks issued by a requester. Typically the crowd 

platform and requester are different entities, and the 

relationship between the requester and worker is mediated 

by the platform. As such, the relationship is very limited, 

with little information provided for context. The crowd 

employed by a system might consist of a few individuals or 

of a large population, and the requester might not even 

know what country the workers are each located in. 

Members of a crowd have many different incentives for 

contributing, such as monetary payments in paid 

crowdsourcing or a desire to contribute to scientific 

research in citizen science projects. In this paper, we 

discuss how different motivations workers have may 

influence attacks in crowdsourcing. In our experiments, we 

focus on paid crowds recruited from Amazon’s Mechanical 

Turk marketplace. 

The most common approach (used by Mechanical Turk) for 

requesters to recruit workers on a crowd platform is for the 

requester to post a task, and then let workers choose which 

task they want to complete from a list of options. This is 

beneficial to requesters who can begin to use knowledge 

they retain between sessions [21] and beneficial to workers 

who can choose tasks they enjoy [27]. 

Quality Control in Crowdsourcing Systems 

Because the relationship between a requester and worker is 

limited and workers are required to have little or no 

background knowledge, quality control is very important to 

the success of a crowd-powered system. As a result, 

maintaining quality is an active area of research [10,11]. 

Since individual workers’ inputs are often error-prone, it is 

common for task requesters to implement agreement-based 

filtering (e.g., voting or averaging) or iterative workflows. 

Using contributions from a group of workers helps ensure 

the quality of the final output. It has been shown in previous 

work that collective responses result in better performance 

than any single worker could achieve [2,9].  

Research in crowdsourcing has focused primarily on 

improving crowdsourcing quality based on responses 

collected from a group of error-prone workers. For tasks 

with one unknown correct answer, voting is one of the most 



common techniques for aggregating multiple worker 

responses to predict the correct answer (e.g., Galaxy Zoo, 

Legion [16]). For estimation tasks, averaging responses is 

often an effective option (e.g., Legion:AR for image 

segmentation, Evanini and Zechner [6] for speech prosody). 

Other models of voting (e.g., ranked voting or tournament 

voting) have been used in idiom translation when majority 

voting alone is not successful [25]. Another common 

approach is to use iterative workflows for creating and 

revising content over a series of steps from multiple 

workers (e.g., TurKit [14] and Soylent [2]). Different than 

voting and averaging methods, which aggregate multiple 

workers’ responses to the same micro task, iterative 

workflows involve individual or a small number of workers 

providing input at each step, which as we will see, may 

make these tasks more vulnerable to attacks from 

individuals or from groups of workers. 

Existing Defenses Against Malicious Attacks 

While quality control in crowdsourcing is an active area of 

research, little is known about coordinated malicious 

attacks on crowd systems. Efforts to avoid malicious 

workers have focused mostly on workers who want to 

strictly optimize their payment relative to the time or effort 

spent to complete a task [22]. These workers want to get 

paid the most for the least amount of effort, and they may 

take shortcuts (e.g., write scripts or give simplistic answers) 

to do so. However, in many important cases, workers are 

not just motivated by task payments, but also curiosity, 

beliefs, or interests. As crowd systems are used for 

increasingly valuable tasks, the payment involved may be 

minimal compared to the value of attacking the task. We 

identify two primary threats maliciously motivated workers 

pose to crowd systems beyond trying to optimize payments: 

1) they can extract the private or sensitive information from 

tasks posted to a crowd platform, and 2) they can 

maliciously manipulate the outcomes of particular tasks.  

Several existing approaches have been tried to prevent data 

leakage. The division of a task into micro tasks is typically 

used to allow multiple workers to contribute, facilitating 

agreement as well as simplification of the task. However, it 

can also be used to prevent any one crowd worker from 

seeing too much information, such as an entire medical 

record [25]. Legion:AR [18] used automatic methods to 

generate masks for specific pieces of information, such as a 

user’s face (shown in Figure 2). Similarly, EmailValet [12] 

allows users to specify what data they share with the crowd. 

Several existing approaches have also been explored to 

thwart task manipulation. Many of the crowd-based quality 

control measures designed to reduce noise and errors 

impede individual attempts to manipulate a task because 

they rely on agreement across different workers. However, 

coordinated efforts could create an artificial appearance of 

agreement. Gold standard tasks [13], where the requester 

knows the answer to a subset of questions, can be used to 

evaluate worker quality even when the majority is wrong, 

but must be generated a priori, which can be difficult or 

impossible in real-world settings. 

Participants in a coordinated attack on a crowd-powered 

system can have varying motivations. For example, external 

influencers can recruit workers from existing markets by 

posting a task that asks workers to complete a different 

task. They may or may not get paid for the task they are 

asked to attack, depending on the request, but the net 

payment for completing the attack must be at least as high 

as that paid for the original task to incentivize opportunistic 

workers. Groups of individuals may also coordinate attack 

when it is in line with their beliefs or interests. For 

example, a group of users from 4Chan, Anonymous, or 

other similar community could attack a crowd-powered 

system as they have previously done to websites and 

service providers with denial of service attacks. 

Web service attacks are frequently carried out using 

automated bots. While this represents a manipulation threat 

to systems relying on agreement, bots are relatively easy to 

detect in most crowd systems because the tasks require 

human understanding. When they do not, it is possible to 

add a ReCAPTCHA (www.google.com/recaptcha) task to 

check for worker authenticity. 

 

Figure 2. Prior systems such as Legion:AR have attempted to hide personal data from the crowd. Actors in the scene have been 

automatically identified and veiled in separate colors to preserve privacy and help workers identify which actor in the scene they 

should be focusing on. These veils can cover only the face (left two panels), or the entire silhouette of the user (right panel). 

 



Allowing workers to self-select tasks based on preference 

enables malicious workers or groups to target specific tasks 

and all give the same response. One way to avoid this is to 

directly route workers to particular tasks. Routing is 

supported by market places such as MobileWorks 

(www.mobileworks.com), and can be implemented on top 

of platforms that otherwise use self-selection [16, 17, 29]. 

Successful implementation of routing requires learning 

about individual workers’ interests and capabilities for 

different tasks. To take advantage of this approach on an 

individual basis the requester must have enough active tasks 

to make the chance of returning to the same one very low. 

These measures, however, only begin to address the threats 

posed to crowd systems as the data used by crowd systems 

and their outcomes become increasingly valuable. We now 

look more closely at the underlying vulnerability of crowd 

systems to information extraction and answer manipulation. 

INFORMATION EXTRACTION 

We call the threat of leaking private or sensitive 

information in tasks to others by posting tasks to crowd 

platforms the threat of information extraction. For instance, 

using a crowd captioning service such as Legion:Scribe 

[16] might result in letting workers hear a phone number, 

personal detail, or company secret. We discuss three types 

of potential types of threats related to workers extracting 

information from tasks: the thread of exposure, 

exploitation, and reconstruction. 

Exposure 

In some cases, a crowdsourcing task may contain 

information private or sensitive enough that were any 

worker to be exposed to the content, it would be harmful. 

For instance, a person using the crowd to help label and 

categorize their personal photos might consider an 

inappropriate or revealing picture to fall into this category. 

Exposure threats cannot be prevented by filtering workers 

since exposing the content even to honest workers is 

considered damaging. However, because the damage 

increases with each new worker exposed to the content, it 

can be limited by minimizing the number of workers that 

the information is shown to in situations where the content 

cannot be filtered prior to exposure to the crowd. 

Exploitation 

Often the concern with exposure of information is that the 

information could be exploited by the worker either for 

their own benefit or to harm the owner of the information. 

We call such threats as exploitation threats. For instance, a 

blind VizWiz user who turns to the crowd for image 

labeling might accidentally take a picture that includes their 

home address or credit card number. If a malicious worker 

were shown this image, that worker may steal this personal 

information. The difference between exposure and 

exploitation is that while exposure risks are always 

considered harmful, regardless of the worker, not all 

workers will actively exploit information. 

Given no other knowledge of the workers, each worker 

hired for a task equally increases the risk of exploiting the 

information presented in the task. In such cases the risk of 

information explication grows linearly with the number of 

workers, as is the case with exposure. There may be 

opportunities for limiting exploitation threats if 

maliciousness of workers can be predicted.   

Reconstruction 

For some tasks, no individual piece of information incurs a 

large risk for the requester. For example, individual words 

in a private document usually do not hold enough context or 

meaning independent of the rest of the document to allow 

the worker to glean any valuable information. However, the 

more information that is revealed, the larger the potential 

risk that individually revealed pieces of information will 

come together to expose potentially harmful information 

about the requester. For instance, while information about a 

user’s ZIP code, gender or date of birth alone reveals very 

little about them, knowing all three can be used to uniquely 

identify 87% of people in the United States [30]. We call 

such attacks as reconstruction attacks, since information 

extracted from individual tasks need to come together to 

cause damage for the requester.  

Reconstruction attacks differ from exploitation and 

exposure attacks in that the harm to the requester (or benefit 

to the worker) grows non-linearly. Typically, the potential 

harm will grow either super linearly, or as a step function, 

meaning information either builds on prior knowledge to be 

more revealing (e.g., words in a document), or a certain 

subset of information must be recovered before anything 

important can be known (e.g., multiple partial images of a 

credit card number). This case differs from the previous 

cases because the harm from a set of revealed information 

is greater than the sum of the risks of each piece, meaning 

the risk grows non-linearly. 

Prior examples of this type of attack in other domains have 

also shown that combining recovered records with other 

information can also result in an even larger privacy leak. 

For example, the information extracted from the Netflix 

challenge dataset, AOL search query logs, and 

Massachusetts medical records all appeared to preserve user 

anonymity on their own, but when joined with external 

databases, yielded personally identifying information.  

Because the risk grows super-linearly due to the increase in 

context, the threat for requesters is significantly higher for 

group attacks. Reconstruction tasks with large numbers of 

individual pieces almost always require coordinated groups 

of workers (or bots) to successfully attack, since the number 

of tasks that must be viewed to cause harm can be high. By 

using a large enough group of workers, malicious entities 

can recover sizable portions of the information posted by a 

given task, even when the rate of workers outside of their 

group taking tasks is high. 



ANSWER MANIPULATION 

Another type of threat to users of crowd-powered systems 

is that the answers they receive are intentionally incorrect 

due to workers manipulating the answers they provide. In 

this section, we discuss three areas of concern regarding 

workers manipulating tasks: classic manipulation, 

disruption, and corruption. 

Classic Manipulation 

Classic manipulation threats are ones where the worker or a 

group of workers changes the outcome of a task to reflect a 

particular outcome that is different from what the requester 

is looking for. We borrow the term manipulation from the 

breadth of research in election theory that strives to prevent 

this type of situation, in which one party attempts to attain 

undue influence [24]. Because most crowd systems use 

voting or other decision aggregation approaches to ensure 

quality, classic manipulation requires workers to comprise a 

large enough portion of the final contributing set to ensure 

the answer they want wins. Since this is not possible to do 

alone, workers must collaborate with others to successfully 

accomplish their goal. 

Disruption 

Another type of attack aims to simply disrupt the crowd-

powered service. This means that the goal is to make the 

final result either any incorrect answer, or not allow the 

system to reach sufficient consensus to provide an answer 

at all. For tasks that use aggregation as a quality measure, 

disruption also requires a group of malicious workers, but it 

may not require them to coordinate on a fixed manipulation 

strategy. The difference between classic manipulation and 

disruption is the existence of an intended controlled 

outcome versus any outcome that stops the system from 

giving a valid response. 

Corruption 

Some crowdsourcing tasks ask sets of workers to contribute 

input, and then ask a different group to determine if that 

contribution was helpful or progressed the task. This 

process is repeated over and over with different workers 

until a final answer is reached (e.g., Wikipedia, TurKit 

[14]). Since these systems do not require that the entire 

crowd that contributed to a given piece be present 

throughout the lifetime of the decision process, the 

malicious input of a relatively very small group of workers 

can potentially destroy the progress made on the entire task.  

Corruption can be manipulative or disruptive, and occurs in 

iterative workflows in which a small group can undo the 

progress of a much larger set if they can manipulate just 

one contribution and the corresponding verification step. To 

prevent corruption Wikipedia uses change logs that allow 

people to easily revert to prior versions. However, to the 

best of our knowledge most iterative workflows that run 

using Mechanical Turk  do not protect themselves in this 

manner, meaning corruption of a task at any given point can 

prevent future good workers from repairing the damage. 

RAISING AN ARMY 

While attacks on a crowd-powered system conducted by an 

individual require no coordination of effort or motivation, 

many of the most harmful potential attacks on crowd-

powered systems involve coordinated effort by multiple 

workers. Group attacks can be carried out by a number of 

malicious workers organizing around a common objective. 

Such attacks can also be organized by a malicious entity 

directing a group of not necessarily malicious workers to 

execute an attack. This type of group attacks organized by a 

malicious entity may pose threats for the worker 

community since workers may be directed to carry out tasks 

with ethical or legal problems.  

To understand how vulnerable crowd systems are to 

extraction and manipulation attacks, we conducted several 

experiments where we actively attacked a task of our own 

creation. We used crowds of people, recruited via the same 

crowdsourcing platform (in our case Mechanical Turk), to 

carry out the attacks. In doing so, our goal was to identify 

whether such attacks were feasible, and to build a picture of 

the different roles crowd workers take when asked to attack 

another task. We identify the following worker types as 

interesting to our analysis: 

 Passive workers are not looking to find or capture any 

content. These workers might view unintended 

information (e.g., nude images), creating an exposure 

risk, but they will perform the task honestly and not 

misuse any information they are exposed to. 

 Opportunistic workers do not actively seek sensitive 

information or chances to harm a task, but will seize 

such opportunities when presented. They may exploit 

the information they encounter, or perform a task 

incorrectly if paid to do so. 

 Malicious workers actively seek information that they 

can exploit or try to manipulate tasks for personal gain. 

They may, for example, look for image recognition 

tasks that provide access to sensitive information. 

 

Figure 4. Easily read handwriting example which was used in 

our experiments. The text is length. 

 

Figure 3. Ambiguous text that could read in many ways, 

including as gun, sun, lun, or fur. The actual text is fun. 



 Beneficent workers are willing to go beyond 

completing the task correctly to further help the 

requester, instead of following economic incentives 

alone. This has been observed in terms of feedback on 

task design (including in this work), and reporting 

workers they see doing a task incorrectly [20]. 

As we vary the appearance of the attack we coordinate in 

our experiments in terms of maliciousness, we are able to 

identify passive workers (who will not complete tasks they 

see as potentially harmful), opportunistic or malicious 

workers (who are willing to complete potentially harmful 

tasks), and beneficent workers (who go above and beyond 

and contact us regarding the attack task). 

EXPERIMENTS 

Our goal was to test how viable it is to recruit a group of 

crowd workers to attack a different crowdsourcing task for 

us. We posted the two tasks under different requester 

names. In the first task (referred to as the attack task), 

workers were directed to follow a link to another task (the 

target task) that was visible on the crowdsourcing platform. 

This setup is illustrated in Figure 5. The target task always 

requested workers type the text they saw in an image. For 

example, users were asked to type the text shown in Figures 

3 (perhaps “fun”, “lun”, “sun”, or “gun”) and 4 (“length”) 

or transcribe the text given on a credit card. 

Since a worker’s hesitation to complete the attack task 

could possibly draw heavily on a moral component, we 

designed the attack task to either appear innocent or 

harmful (malicious). For the malicious condition of the 

extraction study, workers were asked to extract real-looking 

credit card information from the target task and return it to 

us. In the manipulation study, workers were asked to 

provide a clearly incorrect answer to the target task. 

All workers were unique, and both tasks paid $0.05. In 

total, 1,140 workers completed our task, with at least 140 

workers participating in each condition.  In the baseline 

condition, the attack task directed workers to the target task 

and asked them to report back after completion by clicking 

a “done” button without extracting information or 

manipulating the target task. 73.8% of workers completed 

this baseline condition.  

Extraction Study 

Our first experiment tested whether or not crowd workers 

were willing to retrieve information and return it to us. We 

used the following conditions in the extraction experiments: 

 Baseline: We used the same baseline described above. 

 Innocent: Workers were shown a computer-generated 

picture of a credit card and asked to transcribe the text 

content. While this card had as much information on it 

as a real credit card (name, number, expiration date, 

etc.), the information was clearly fake (e.g. the card 

number was “01234[…]” and the name was “Card 

Holder”) and the picture was clearly not a real image. 

 Malicious: To test the effect of perceived intentionality 

on the crowd, we ran the same extraction task with a 

photograph of a real-looking (but still fake) credit card. 

We expect this to appear to attentive workers as more 

of a threat than the artificial image. 

We measured the rate of attack task response relative to the 

target task. In other words, we looked at how many workers 

who completed the task were willing to return the answer to 

us and get paid for the attack task. Our results are shown in 

Table 1. In all cases, a sizable portion of crowd workers 

were willing to extract information from other tasks. When 

the information being extracted appears innocuous, almost 

as many people (no significant difference) returned to 

provide the extracted information as they do when they are 

not asked to extract anything (62.1% v. 73.8%, p > .1). 

Even when asked to extract credit card information (the 

 

Table 1. Extraction experiment return rates. Significantly 

fewer (p < .0001) workers were willing to copy task 

information to us when we asked a question that contained 

information that looked potentially sensitive. 

 

 

Figure 5. Layout of our information extraction tests. Initially 

the worker accepts our task, but then is redirected to another 

task where they are asked to return the answer they gave. 

 

Table 2. Manipulation experiment return rates. Significantly 

fewer (p < .0001) workers were willing to follow the 

manipulation instructions given in the attack task when the 

instructions clearly directed them to answer incorrectly. 



malicious case), workers were willing to do so 32.8% of the 

time, but this is a significant drop in return rate (p < .0001). 

We also saw a significant reduction in return rate (62.1% v. 

78%) when completing the credit card task compared to the 

same baseline using the handwriting task (p < .01). 

Manipulation Study 

We also conducted a set of experiments to find out if 

workers were willing to actively manipulate a task based on 

our instructions. We again divided the conditions into two 

levels of potential harm and tested the following conditions: 

 Baseline: We used the same baseline described above. 

 Innocent: To see if the crowd would follow directions 

that overrode the instructions in a different task, we 

gave them a specific response to provide the target task 

in the instructions of the attack task. We used a 

handwriting example that was unclear what the true 

answer was (Figure 3), and provided a plausible 

solution (for this ambiguous task, workers were 

instructed to type “sun” when the correct answer was 

“fun”). We also ran another condition that asked 

workers to label the same image without instructions in 

order to get a baseline so we could detect a 

manipulative effect in the results. 

 Malicious: To see if workers are also willing to 

knowingly provide false information (disobey the 

instructions of the target task at the request of the 

attack task), we created another task manipulation 

condition in which workers asked to respond the inner 

task in a way that is clearly incorrect. In this condition, 

the target task asked workers to transcribe an image 

(Figure 4) and the attack task instructed them to 

transcribe this image as “sun” (the answer is “length”). 

Our results, shown in Table 2, again demonstrate that 

people are willing to perform tasks that act on other tasks. 

As many people (no significant difference) were willing to 

complete the target task when instructed to manipulate it in 

an innocent fashion as were willing to complete the task 

when given no additional instructions (75.0% v. 73.8%, p > 

.4. Interestingly, when the attack task instructed to give a 

clearly incorrect response to submit, a significant portion of 

the crowd refused to comply with the request to complete a 

task obviously incorrectly. We saw a significant (p < .0001) 

decrease the response rate for the malicious condition. We 

also want to know what those who did complete the task 

submitted, and what the final effect on the system was. For 

the malicious manipulation task, 28% who saw the word 

“length” (Figure 4), wrote “sun” as instructed. The rest 

correctly labeled the image despite initial instructions. Our 

results are shown in Table 3.  This suggests that workers 

might be subject to intentional external biasing when they 

do not perceive the answer as obviously wrong. 

Summary 

Our results suggest that it is possible to mobilize the crowd 

to attack other tasks. When an attack task appears innocent 

to workers, they are as willing to complete the task as if 

they were not asked to extract or manipulate the target task. 

Even when the attack task appears likely to do harm (e.g., 

extracts credit card information or enter incorrect 

information), a significant portion of the crowd is willing to 

complete it, suggesting there are significant vulnerabilities 

for crowd systems to coordinated attacks. 

It is notable, however, that significantly fewer workers were 

willing to complete the attack task when it appeared 

malicious as when it appeared innocent, both in the 

extraction case and in the manipulation case. This suggests 

that some crowd workers can recognize the attack and 

object to it. Nonetheless, it appears possible to manipulate 

even these passive workers to act in ways that they would 

not intend if it the task appears innocuous, as many more 

workers gave different responses to the target task than they 

might naturally when given a plausible response. 

DISCUSSION: SECURING AGAINST ATTACKS 

Our findings demonstrate the vulnerability of existing 

crowdsourcing practices to extraction and manipulation 

attacks. Although there have been efforts for quality control 

in the presence of error-prone workers, little has been done 

on protecting these systems from the kind of threats studied 

in this paper. We believe that this same focus can and 

should be given to preventing systems from information 

extraction and from worker manipulation as well.  

 
\

  

Figure 6. Layout of our information extraction tests. Initially 

the worker accepts our task, but then is redirected to another 

task where they are asked to provide a specified answer. 
 

 

Table 3. Results from the manipulation experiment. While 

“gun” is the most commonly guessed word for this example 

when no instructions were given, the most popular answer in  

the innocent manipulation conditions is “sun”, as instructed. 

 



While our study showed a significant effect of changing the 

target task’s content on workers’ willingness to complete 

the attack task, our results do not show the exact reason 

why. In future work we would like to be able to isolate 

workers’ reasons for participating and not participating in 

malicious extraction and manipulation tasks. Similarly, 

exploring trade-offs in worker motivation, such as the price 

paid for completing the target versus attack tasks, or the 

purpose of the task being completed, might impact workers’ 

willingness to partake in potentially harmful actions. For 

example, if a worker was well paid to help a blind user in a 

system such as VizWiz, it might be the case that they are 

less likely to return user information to an attack task. 

Our study was also carried out exclusively on Mechanical 

Turk, but provides a method of testing other crowdsourcing 

platforms that attain significant usage in the future. 

Automation for Privacy Preservation 

Previous work presented task-specific approaches for 

limiting information extraction from crowdsourcing tasks. 

As shown in Figure 3, face detection algorithms can be 

used to automatically detect and cover faces to protect 

privacy. Similar approaches can be used for text if the 

structure of private or sensitive information is known (e.g., 

SSN, credit card numbers and addresses). Another approach 

is dividing tasks into smaller pieces to limit information 

extraction. For example, the work by Little and Sun [15] 

proposed dividing images into pieces for protecting privacy. 

Similar approaches have been applied to OCR tasks such 

that no one worker gets the whole word, but multiple 

workers can each transcribe a set of letter that can then be 

recombined into the correct word for the requester. Such 

approaches help to prevent against extraction attacks from 

individuals. However, they are vulnerable against 

coordinated group attacks and may diminish performance 

of tasks that require contextual information about the entire 

task to be able to produce a solution. More attention is 

needed to generalize automated approaches for real-world 

tasks and offer solutions applicable to tasks that require 

context about the entire task.  

Leveraging Reliable Workers 

The results of our experiments showed that not all workers 

behave the same in extraction and manipulation attacks, 

especially when the nature of the attack is malicious. There 

are opportunities for designing workflows that can utilize 

reliable workers for early detection of information 

extraction and manipulation attacks. For instance, workers 

can be instructed to alert requesters about the existence of 

private or sensitive information. Iterative workflows can be 

designed to gradually release tasks – first to reliable 

workers and then to a larger worker pool based on feedback 

from the initial set of workers.  

Reliable workers can also be of use to protect against 

manipulation attacks. As shown by our analyses, existing 

quality control approaches are effective to protect against 

individual manipulation attacks. Since workers in current 

crowdsourcing systems are mostly anonymous, large-scale 

manipulation attacks may need to reach workers with open 

calls as demonstrated in our experiments. Reliable workers 

that are aware of such attacks can alert requesters about 

manipulation attacks and aggregation mechanisms used for 

quality control can be adjusted accordingly. Workers can 

also be incentivized to report such attacks, helping to 

leverage opportunistic workers for the benefit of the task.  

Decision-Theoretic Analysis for Privacy Preservation  

A common approach for quality control in crowdsourcing 

systems is hiring multiple workers for a task to eliminate 

the effect of errors from individual workers on the final 

result. As discussed above, hiring more workers increases 

the risk of information extraction. For instance, the risk of 

exposure may grow linearly in the number of workers hired 

for a task. This observation highlights a trade-off between 

higher quality output and higher risk of information 

extraction. Figure 7 shows an example of this trade-off. 

Given the probability of a task containing private or 

sensitive information, the risk of exposure (the expected 

number of workers exposed to the content) grows linearly 

with the number of workers hired for the task in this 

example. Based on majority voting applied for deciding the 

correct answer of the task, the expected quality (the 

probability of correctly identifying the answer) also grows 

with the number of workers hired. For a system that equally 

weights the utility for correctly identifying the answer and 

the cost for risking exposure, the expected overall utility of 

the system is also displayed in the figure. In this particular 

setting, hiring 11 workers (marked red in Figure 7) for a 

task maximizes the system utility. This case demonstrates a 

quality-risk trade-off, and highlights opportunities for 

designing dynamic decision-theoretic policies that reason 

about the risk of manipulation and extraction and use 

trusted workers in its workflow to minimize these threads.  

 

Figure 7. Tradeoff between expected quality of final decision, 

and the expected risk of exposing information to the crowd. 

The red dot at X=11 represents the number of workers that 

maximizes the expected utility for this example user. 
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CONCLUSION 

In this paper, we studied the vulnerability of existing 

crowdsourcing practices to information extraction and 

manipulation threats from individual workers and groups. 

We demonstrated with experiments on the Mechanical Turk 

platform that a simple task design is sufficient to perform 

both an information distraction and manipulation attacks 

and workers have fewer tendencies to participate when 

tasks appear to be more malicious. We then outlined future 

directions for making crowdsourcing systems more resilient 

to these attacks.  

As crowdsourcing becomes an integral component of many 

systems, threats such as the ones studied in this paper pose 

a significant danger. This paper is a first step towards 

understanding the viability of these threats as well as the 

behaviors of workers in their presence. We hope that 

gaining more understanding of these threats will influence 

further efforts in the future for more secure and resilient 

crowd-powered systems. 
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