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Abstract

Creativity is viewed as one of the most important skills in the context of future-
of-work. In this paper, we explore how the dynamic (self-organizing) nature of
social networks impacts the fostering of creative ideas. We run 6 trials (N = 288)
of a web-based experiment involving divergent ideation tasks. We find that net-
work connections gradually adapt to individual creative performances, as the par-
ticipants predominantly seek to follow high-performing peers for creative inspi-
rations. We unearth both opportunities and bottlenecks afforded by such self-
organization. While exposure to high-performing peers is associated with bet-
ter creative performances of the followers, we see a counter-effect that choosing
to follow the same peers introduces semantic similarities in the followers’ ideas.
We formulate an agent-based simulation model to capture these intuitions in a
tractable manner, and experiment with corner cases of various simulation param-
eters to assess the generality of the findings. Our findings may help design large-
scale interventions to improve the creative aptitude of people interacting in a social
network.

Keywords— Network science, creativity, dynamic social networks

Recent advances in robotics, AI and machine learning are increasingly focused on mimicking or even
surpassing human capabilities. These innovations, however, have serious implications on our future
workforce (1). Approximately 51% of the tasks done in the US economy can be automated (2), and
for each robot on the factory floor, some six jobs are lost (3). The need for manual labor in pre-
dictable and repetitive work is declining, while the demand is soaring for expertise in creative tasks,
problem-solving, and other social-cognitive avenues of soft-skills (2, 4, 5). Again, many of the crit-
ical and challenging tasks of the human civilization require humans to collaborate with others (6),
where they need to perform creatively at both individual and collective levels. Thus, enhancing the
creative abilities of collaborating humans has become one of the aspirational challenges today. This
motivation for creativity-at-scale leads to the exploration of social networks of creative collaborators.
For instance, the development of an innovative product such as an aircraft or a computer operating
system is only made possible by an interacting network of creative problem solvers, who benefit
from each other’s expertise (7). Discussions in an academic network of researchers, faculty mem-
bers and students can stimulate ideas for novel explorations. A graphic designer can find creative
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inspiration from peer-interactions in online networks like Reddit, Behance or Twitter. Adopting a
social network lens helps us better understand the mechanisms, bottlenecks and opportunities for
maximizing creative outcomes at-scale.

Researchers have examined the effects of various network attributes on creativity (8). For instance,
relationship strength, position and external ties of people are known to influence creative perfor-
mance (9). However, a key element missing from most prior literature is the dynamic characteristic
of real social networks. Human interactions are structured in social networks, where people have
control over who they interact with. Given an objective, they can choose to make or break ties to
update the connectivity patterns around them (10), often in response to the behavior, performance,
prestige, age, gender, popularity, self-similarity and other cues of the social partners (11–13). This
dynamic characteristic affords opportunities in human populations that static networks cannot: for
example, dynamic networks promote cooperation (14,15), collective intelligence (16), and speaking
skills (17), among others.

When it comes to creativity, the dynamic nature of social networks has received rather little research
attention. Perry-Smith et al. proposed a spiraling model, capturing the cyclical relationship between
creativity and network position, where one fosters the other (8). The argument being, if someone is
creative at something, it might draw more attention to the creative person, resulting in an increased
centrality and visibility. Again, a central person can inspire creative thoughts in others and also get
inspired by others more readily than a peripheral person, thus helping in further creative ideation.
However, this chain of argument has not been directly tested. Despite some efforts in examining
such temporal effects from network and evolutionary game theoretic perspectives (18–20), it remains
largely unclear how dynamic creative networks evolve with time, what laws they follow, and what
implications such evolving has on creative ideation.

This motivates the desire to understand how creative performances are exhibited and impacted in
dynamic social networks. Consequently, in this paper, we first explore how connectivity patterns
adapt to individual performance cues in a creativity-centric dynamic network. Second, we test how
such adaptations impact creative ideation performances in a dynamic network, against the controls
of static (fixed connections) and solo (unconnected) networks.

We run six trials of a web-based experiment, where participants in a dynamic social network per-
formed idea generation tasks for 5 rounds. The participants chose after each round which of the
peers’ ideas they wanted to be shown as stimuli (see Experimental setup). Following (8), we antici-
pated that people looking for creative inspiration from others will use success cues to determine who
among the peers are more creative and, therefore, more promising to be advantageous to form ties
with (“follow”). We find that in the dynamic networks, the participants were indeed drawn towards
following the most creative ideators. The statistical rarity and novelty ratings of one’s ideas appear
to be robust predictors of his/her popularity in the networks.

If people preferentially form ties with the highly creative ideators in the network, what implications
will it have on the creative outcomes? The associative theory of creative cognition suggests that
priming people properly, e.g., by exposing them to others’ ideas (21, 22), can stimulate their long-
term memory circuitry. This can enable retrieving remotely stored concepts from memory (23).
Combining such remote concepts can help in synthesizing novel ideas (24, 25). Based on this, we
anticipated that following highly creative peers can enable better creative performance in people.
For instance, following a person who generates rare ideas will increase the chances that the fol-
lower comes across ideas that have little overlap with his/her own. This can stimulate further ideas
through novel association of concepts, resulting in ideas that would not have occurred to the fol-
lower otherwise (26, 27). However, we also anticipated a counter-effect that if many people follow
the same highly creative ideators in a dynamic network, the followers’ inspiration sets will become
overlapping, which might introduce redundancy in the stimulated ideas (28, 29). Our results show
that following highly creative ideators is indeed associated with one’s better creative performance.
However, participants who chose to follow the same people (same stimuli) show an increasing se-
mantic similarity in their independently stimulated ideas with time. These results suggest that self-
organizing in a dynamic network can lead to conflicting opportunities and constraints. We formulate
a simulation model that captures these empirically-derived intuitions, and helps assess the generality
of the processes and insights.
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Figure 1: (A) The bipartite network structure used in the static condition, and as the initial con-
figuration in the dynamic condition. (B) Study protocol for each round. In turn-1, the participants
generated ideas independently. In turn-2, the dynamic and static egos received social exposure and
could list further ideas. Only the dynamic egos could update which alters to follow at the end of
each round.

Experimental setup. It is challenging to identify a dataset in the wild that offers traceable links
between ideas and their stimuli in a temporal manner. We therefore resort to an artificial social
network created in the virtual laboratory.

We are interested in divergent creativity, which signifies a person’s ability to come up with numerous
and varied responses to a given prompt/situation (30). We use a customized version of Guilford’s
Alternate Uses Test (31), a widely-adopted approach for quantifying divergent creativity. In each
of 5 rounds, the participants were instructed to consider an everyday object (e.g., a brick), whose
common use was stated (“used for building”). The participants needed to submit alternative uses for
the object which are different than the given use, yet are appropriate and feasible. We choose the
first 5 objects from the Form B of Guilford’s test as the ideation objects respectively in the 5 rounds.

We recruited 288 participants from Amazon Mechanical Turk, who live in USA and are diverse in
their age, racial, ethnic and gender distributions (see SI). We placed them randomly in one of three
network conditions: (1) Dynamic, (2) Static, and (3) Solo. The static and solo conditions act as
controls against which we assess the performances in the dynamic condition. For the dynamic and
static conditions, we adopted a bipartite network structure (Figure 1A). There are two types of nodes
in the network, alters and egos. First, we pre-recorded the ideas of 6 alters, who generated ideas
independently. Then, we used these ideas as the stimuli for 36 egos—18 of them placed in a dynamic
network condition, and the other 18 in static. This bipartite design helped ensure a uniform stimuli
for all the egos in the static and dynamic conditions. We repeated the process for 6 independent trials,
each with its unique alters. Under the solo condition, 36 participants generated ideas in isolation.

Initially, the dynamic and static egos were connected to 2 alters each using the network structure
in Figure 1A. In each round, the egos first generated ideas independently for 3 minutes (‘turn 1’).
They were then shown the ideas of the 2 alters they were connected to, and given an additional 3
minutes to list further ideas (‘turn 2’). The egos were instructed not to resubmit any of the alters’
exact ideas, and that only non-redundant ideas would contribute to their performance. They were
also told that there will be a short test at the end of the study, where they will need to recall the ideas
shown to them. This was to ensure that the participants paid attention to the stimuli, which is known
to positively impact ideation (32). Then, the egos rated the ideas of all of the 6 alters on novelty
(5-point ratings, 1: not novel, 5: highly novel). Finally, in the dynamic condition, the egos could
optionally follow/unfollow alters at the end of each round to have an updated list of 2 followees each.
Except for the alters’ username and ideas, no other information about the alters was shown to the
egos. The egos were required to submit the rationale behind their choices of updating/not updating
links in each round. This was in place to make the dynamic egos accountable for their choices,
which is known to raise epistemic motivation and improve systematic information processing (33).
The egos in the static condition could not update their links, marking the only difference between
the static and dynamic conditions.

The participants in the solo condition were given 6 minutes to list their ideas without any external
stimuli. Detailed descriptions and examples guided the participants throughout the study. Everyone
was paid $10, and the top 5 egos/solo participants (in each group of 18) with the most number of
non-redundant ideas were awarded $5 bonuses. Figure 1B summarizes the protocol.
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Figure 2: Final/evolved dynamic networks. The diameters of the circles in the upper-rows are
proportional to the alters’ follower counts at the end of the 5th round.
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Figure 3: Number of connections updated per ego at the end of each round.

Measures. We quantify creativity using three metrics: (1) Non-redundant idea counts, (2) Average
novelty ratings and (3) Creativity quotient (see Methods for details). If an idea is given by at most
a threshold number of participants in a given participant pool, it is considered non-redundant (34).
The non-redundant idea count is thus a measure of the statistical rarity of the ideas.

Each idea in the dataset was rated on novelty by multiple people. We take the mean rating received
by an idea as its novelty indicator, and consider the average novelty rating of a given set of ideas as
a creativity metric.

The creativity quotient metric, Q, uses information theoretic measures to capture the fluency (quan-
tity of ideas) and flexibility (the ability to generate a wide variety of ideas) of a set of ideas (35–37).
In all three metrics, higher values indicate better creative performances.

Results

Link update patterns in the network evolution. We first explore how connectivity patterns adapt
to individual performance cues in creativity-centric dynamic networks. The networks evolved as the
egos updated their lists of 2 alters across the rounds. All of the alters started with 6 ego-followers,
but after 5 rounds of network evolution, some of the alters lost followers, and some of them gained.
The final evolved networks of the 6 trials are shown in Figure 2. The number of connection updates
per ego at the end of each round had a downward trend (p < 0.001 for the negative slope, Figure 3).
Out of a maximum of 2 possible updates, an average of 0.97 connections were updated per ego after
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Figure 4: The popular alters significantly outperformed the unpopular alters in all three metrics: (A)
The total number of non-redundant ideas in all 5 rounds (2-tailed test, t(34) = 7.291, p < 0.001),
(B) Average novelty ratings in all 5 rounds (t(34) = 5.7, p < 0.001), and (C) The total creativity
quotient in all 5 rounds (t(34) = 5.81, p < 0.001). ***p < 0.001.

the first round, while 0.3 connections were updated per ego after the fifth round. This suggests that
as the egos received information about the alters’ performances, they made up their minds on whom
to follow, and readjusted later if necessary.

We denote alters who finished with > 6 and ≤ 6 followers as ‘popular’ and ‘unpopular’ alters
respectively. If the egos didn’t update their links at all, the alters would still have the initially
assigned 6 followers, so we take > 6 followers as a marker of popularity. The total non-redundant
idea counts of the popular alters in all 5 rounds were significantly higher than those of unpopular
alters (popular (p) vs unpopular (u) alters: 2-tailed test, np = 13, nu = 23, t(34) = 7.291, p <
0.001, Figure 4A; p < 0.05 in all 6 trials, SI Figure S1). Similarly, the popular alters outperformed
the unpopular alters significantly in the average novelty ratings (2-tailed test, t(34) = 5.7, p <
0.001, Figure 4B; p < 0.05 in 5 out of 6 trials, SI Figure S2). The total creativity quotient Q of the
popular alters in all 5 rounds were again significantly higher than those of unpopular alters (2-tailed
test, t(34) = 5.81, p < 0.001, Figure 4C; p < 0.05 in 3 out of 6 trials, SI Figure S3). SI Table S1
provides further details.

Using multivariate linear regression, we explore how the alters’ creative performances correspond to
their final popularity. The rational being, by the end of the fifth round, the egos had full knowledge
of the qualities of the alters’ ideas. So, we can expect the egos’ final choices to be captured by
the overall performances of the alters. As the dependent variable yi, we take the fraction of egos
connected to an alter i at the end of the 5th round. The independent variables are: (1) the relative
number of non-redundant ideas, u′i = ui∑

i
ui

, (2) relative average novelty ratings, r̄′i = r̄i∑
i
r̄i

,

and (3) relative creativity quotient, Q′
i = Qi∑

i
Qi

. Here, ui, r̄i and Qi are the total number of

non-redundant ideas, average novelty ratings and total creativity quotients of alter i in all 5 rounds.
We take the relative performance of the alters with respect to other alters in a given trial, since the
egos could only choose from a fixed pool of alters. While all the independent variables correlate
strongly with the dependent variable (Pearson’s ρ = 0.80, 0.86, 0.75 respectively, p < 0.001 in
each), multivariate regression helps us explore the relative contributions of the three independent
variables. Mathematically,

yi = β0 + β1u
′
i + β2r̄

′
i + β3Q

′
i (1)

We train on 70% data, compute R2 and adjusted-R2 on the remaining 30% data, and repeat the
process 10 times (each time with a new 70/30 split) to compute a confidence interval around the
meanR2 and mean adjusted-R2 values. Table 1 summarizes the results. We first test the independent
variables separately using univariate regression, and find r̄′ to give the best adjusted-R2

r̄′ = 0.69
(Model 1). Adding u′ makes the adjusted-R2

r̄′,u′ = 0.72 (Model 2), while all three features give an
adjusted-R2

r̄′,u′,Q′ = 0.70 (Model 3). In Model 3, the coefficients are significant for r̄′ and u′, but
not for Q′. This shows that the associations reported here are systematic for the first two predictors
(r̄′ and u′), which together explain 72% of the variation in the dependent variable. Thus, the egos’
connectivity dynamics are strongly captured by the novelty of the alters’ ideas (r̄′) and moderately
by the statistical rarity of those ideas (u′). The relative creativity quotient metric has much of its
information overlapped with the other two metrics.
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Table 1: Regression results of predicting the alters’ relative popularity from their relative creativity
markers. β = standardized regression coefficient. **p < 0.01. ***p < 0.001. N = 36 for each
model.

Predictor Model 1: r̄′ only Model 2: r̄′, u′ Model 3: all predictors
β t (std. err.) β t (std. err.) β t (std. err.)

r̄′ 0.1851*** 9.762 (0.019) 0.1278*** 4.972 (0.026) 0.1026** 3.435 (0.030)
u′ — — 0.0767** 2.983 (0.026) 0.0704** 2.763 (0.025)
Q′ — — — — 0.0399 1.562 (0.026)
R2 0.72, 95% C.I. =[0.69, 0.75] 0.78, 95% C.I. =[0.74, 0.81] 0.79, 95% C.I. =[0.75, 0.83]

Adjusted-R2 0.69, 95% C.I. =[0.66, 0.72] 0.72, 95% C.I. =[0.67, 0.77] 0.70, 95% C.I. =[0.65, 0.75]

As most of the connection updates happened after the first round, we explore how the alters’ first
round performances can predict their popularity at the end of the first and fifth rounds. We find that
the features r̄ and Q from the first round together give the best adjusted-R2 = 0.67 in predicting
the alters’ popularity after the first round (95% C.I.=[0.59, 0.76]). Similarly, for predicting the pop-
ularity after the fifth round only from the first round’s performances, the feature r̄ alone gives the
best adjusted-R2 = 0.60 (95% C.I.=[0.52, 0.67]). This drop in the explainability of the dependent
variable can be due to the fact that when we try to predict the final popularity of the alters from the
first round’s data, we miss out on the performance information from the middle rounds, which can
have an effect on the ego’s final choices. When we incorporate all 5 rounds’ data, we are able to
predict the final popularities with adjusted-R2 as high as 0.72 (Model 2).

The key take-away is that the egos in a dynamic network predominantly form ties with the consis-
tently high-performing alters, as anticipated. In typical creativity studies, participants are shown
stimuli randomly or based on intrinsic qualities (21,22). Here, a key contrast is that the networks are
allowed to dynamically self-organize, as one can choose for oneself who to take inspirations from.
Thus, the implications of such adaptations on the ideation process, as explored below, become direct
manifestations of the dynamic nature of the networks.

Exposure to high-performing alters is associated with better creative performances of the egos.
We argued previously that forming ties with high-performing alters should increase the chances
that an ego comes across ideas that have little overlap with his/her own. This lack of overlap, in
turn, can increase the chances of stimulating new ideas by facilitating novel associations between
remote concepts. To test this, we take advantage of the fact that in turn-1, the egos generated ideas
independently prior to any social exposure, which allows us to test the overlap their ideas have
with their alters’ ideas (measured by Jaccard index, see Methods). In turn-2, the egos could see
the stimuli, allowing us to explore whether the creative qualities of the stimulated ideas have any
association with how creative the respective alters were.

We first find the round-wise popular alters by identifying those with > 6 followers at the end of
each round. Then, for each round, we split the egos into three ‘groups’, where (i) both, (ii) only
one, and (iii) none of the followees of an ego are round-wise popular. Thus, we analyze each ego’s
data across 5 rounds, where the ego belongs to one of these 3 ‘groups’ in each round. The group
sample sizes are ni = 273, nii = 476, and niii = 331 respectively. We assess the fixed effects of
the group and round factors (3 and 5 levels respectively) against the random effects of the egos to
control for repeated measures. We employ the Aligned Rank Transform (ART) procedure, which is
a linear mixed model-based non-parametric test (38), available in the ARTool package in R (39).

We analyze the average overlap between each ego’s turn-1 ideas and his/her two alters’ ideas. We
find a significant main effect of the group factor (ART procedure, F (2, 669.84) = 66.53, p <
0.001). Post-hoc pairwise comparisons among the group factor levels in the fitted ART model show
that group (i) had significantly less idea-overlap than group (ii) (t(887) = −7.52, p < 0.001), and
group (ii) had significantly less overlap than group (iii) (t(574) = −5.56, p < 0.001). All p-values
are Bonferroni-corrected. Thus, following more high-performing alters systematically decreased the
overlap between an ego’s turn-1 ideas and the alters’ ideas, as anticipated (Figure 5A and SI Tables
S2, S3). Group (i) consistently had less overlap than groups (ii) and (iii) in each round (SI Figure
S4).
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Figure 5: (A) Average overlap between the egos’ turn-1 ideas and their alters’ ideas. We compare
among egos with (i) both, (ii) only one, and (iii) no round-wise popular alters. Following more
high-performing alters decreases the egos’ exposure to overlapping ideas. Panels (B), (C) and (D)
show the creative performances of the same groups of egos in turn-2. In all three metrics, egos in
group (iii) perform the worst. *p < 0.05, **p < 0.01, ***p < 0.001; all p-values corrected for
multiple comparisons and repeated measures.

We then explore the creativity measures of the turn-2 ideas across the three levels of the group
factor. We fit three separate models for the three metrics. All of the three creativity metrics show
significant main effects for both the group and round factors, but no significant interaction between
the factors (Main effects of the group factor: (1) Non-redundant idea counts, F (2, 825.86) = 3.7,
p = 0.025, (2) Average novelty ratings, F (2, 535.47) = 11.85, p < 0.001, (3) Creativity quotient,
F (2, 1036.36) = 6.66, p = 0.001).

We proceed to conduct post-hoc analysis among the 3 group levels as before. We find that group
(iii), i.e., egos who followed unpopular alters only, showed the worst performance in all three met-
rics. In particular, group (ii) significantly outperformed group (iii) in non-redundant idea counts
(t(727) = 2.69, p = 0.02), but the other two pair-wise comparisons (group (i) vs group (ii) and
group (i) vs group (iii)) were insignificant in this metric. In case of the average novelty ratings,
group (i) significantly outperformed group (ii) (t(721) = 1.97, p = 0.049), and group (ii) signifi-
cantly outperformed group (iii) (t(458) = 3.4, p = 0.002). As for creativity quotient, both groups
(i) and (ii) outperformed group (iii) (respectively, t(1022) = 3.06, p = 0.005 and t(1016) = 3.5,
p = 0.002). There was no significant difference between groups (i) and (ii). See Figure 5B-5D and
SI Tables S4-S5. These results imply that following at least one high-performing alter is associated
with better creative performance of the egos. Our results thus suggest evidence for better stimulation
of ideas when egos are exposed to high-quality ideas.

Following the same alters introduces semantic similarities in the egos’ ideas. We further moti-
vated a counter-argument that if multiple egos follow the same alters, their stimuli sets will become
overlapping. This can make the egos’ stimulated ideas similar, despite ideating independently. To
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Figure 6: (Top row) Example one-mode projections of the bipartite networks on the ego-nodes
from trial 4. In the static condition, the initial condition remained fixed. (Bottom row) Semantic
dissimilarity (Word Mover’s Distance, WMD) between the idea-sets of node-pairs are shown for (A)
dynamic, (B) static and (C) solo conditions. Node-pairs that share two common alters in the dynamic
condition show significantly less dissimilarity by the fifth round than the 0 and 1 common alter
cases (2-tailed tests, 2 vs 0 common alter(s): t(452) = −2.962, p < 0.01; 2 vs 1 common alter(s):
t(632) = −2.788, p < 0.02). Whiskers denote 95% C.I. *p < 0.05, **p < 0.01 (Bonferroni-
corrected).

test this, we explore whether the semantic (dis)similarities between each node-pair’s turn-2 ideas
have any association with the number of common alters they have. We estimate the semantic na-
ture of ideas using neural word embeddings (Word2Vec (40)) and compare the dissimilarity of the
embeddings using Word Mover’s Distance (41) (see Methods).

We first take one-mode projections of the round-wise bipartite networks on the ego nodes. In the
projected graphs, two ego-nodes are connected with an edge if they have common alters (top row
of Figure 6). We compute the semantic dissimilarity between each node-pair’s turn-2 idea-sets. We
then compare the dissimilarities among node-pairs with 2, 1 and 0 common alters (corresponding to
the purple, gray and missing edges respectively in the projected graphs).

As the dynamic-egos rewired their connections across rounds, the turn-2 ideas of node-pairs with
2 common alters gradually became less dissimilar (p < 0.05 for the negative slope, Figure 6A).
Node-pairs with 0 and 1 common alters did not show any such decreasing trend. At the end of the
5th round, the node-pairs with 2 common alters were significantly less dissimilar than the 0 and 1
common alter cases (sample size of node-pairs: n2 = 170, n1 = 464, n0 = 284; 2-tailed test;
2 vs 0 common alter(s): t(452) = −2.962, p < 0.01; 2 vs 1 common alter(s): t(632) = −2.788,
p < 0.02; Bonferroni-corrected p-values; see SI Table S6). In the static condition, the alters were the
same, but the network remained fixed. All of the three comparison cases of 0, 1 and 2 common alter
node-pairs showed steadily decreasing dissimilarity (p < 0.001 for the negative slope in all three
cases), but there was no difference among the three comparison cases (p > 0.05, Figure 6B). In
the solo condition, there was no stimuli, and the semantic dissimilarity did not have any systematic
trend (p = 0.68 for the slope, Figure 6C).

This shows that as the rounds progressed, the ideas of egos who followed the exact same alters
increasingly grew similar. Importantly, this effect is different from groupthink (42), where the desire

8



Static Dynamic Solo
2.6

2.8

3.0

3.2
(B) 

A
v

e
ra

g
e

 n
o

v
e

lt
y

 r
a

ti
n

g
s 95% CI

10

20

30

40

50

60

C
u

m
u

la
ti

v
e

 Q

(C) 

Round

21 3 4 5

1

3

5

7

Round

21 3 4 5

(A) 

C
u

m
u

l. 
n

o
n

-r
e

d
u

n
. i

d
e

a
 c

o
u

n
t

Static

Dynamic

Solo

Static

Dynamic

Solo* *

Figure 7: Individual-level comparisons of (A) cumulative non-redundant idea counts, (B) average
novelty ratings and (C) cumulative creativity quotients among various study conditions. The static
and dynamic conditions significantly outperformed the solo condition in the total number of non-
redundant ideas (2-tailed test; dynamic vs solo: t(142) = 2.7, p < 0.03; static vs solo: t(142) =
2.898, p < 0.02). Whiskers denote 95% C.I. *Bonferroni-corrected p < 0.05.

for harmony or conformity results in consensus among group members. In our case, the egos acted
independently without the knowledge of other egos’ ideas, yet became increasingly similar to the
co-followers of the same alter.

Individual creative performance comparisons among various study conditions. We analyze the
individual creative performances in various study conditions. The participants in both the dynamic
and static conditions significantly outperformed the solo participants in the total number of non-
redundant ideas (2-tailed test; dynamic nd = 108, static ns = 108, solo nc = 36; dynamic (d)
vs solo (c): t(142) = 2.7, p < 0.03; static (s) vs solo (c): t(142) = 2.898, p < 0.02; all p-
values Bonferroni-corrected; Figure 7A, SI Table S7). However, there was no significant difference
between the dynamic and static conditions (2-tailed test, p > 0.05).

The dynamic egos showed significantly higher average novelty ratings than the static egos (2-tailed
test, p < 0.05), but after Bonferroni correction, the difference was no longer significant (Figure 7B).
The other condition-pair comparisons (solo vs dynamic and solo vs static) did not show any signifi-
cant difference (p > 0.05). The dynamic egos significantly outperformed the static egos in two trials
out of six (2-tailed test, p < 0.05).

The creativity quotient metric did not show any significant difference between any of the condition-
pairs (p > 0.05 for each condition pair, Figure 7C). SI Figures S5-S7 summarize trialwise results.

Thus, at an individual level, we observe no consistent and systematic benefit in dynamic networks
compared to their static counterparts. This is in contrast to another important human performance
avenue—collective intelligence—where dynamic link adaptations have been shown to have per-
formance benefits over the static condition (16). However, in typical collective intelligence tasks,
people can imitate their peers’ answers to get closer to the ‘correct’ responses. In our study, the task
encouraged open-ended ideation, and none of the three creativity metrics captured any systematic
benefit of the dynamic condition.

Simulation model for the observed processes. We formulate an agent-based simulation model for
the observed processes. The purpose is two-fold: First, to capture the network dynamics and the
associated micro- and macro-level stimulation effects in a simple and tractable manner. This helps to
provide clarity to the interplay between the network and cognitive processes in the system. Second,
to explore corner case outcomes of various simulation variables, e.g., the rewiring probability, inter-
ego similarity, cognitive stimulation function and network size. These result in insights that enrich
the empirical findings. The simulation model, analysis and results are elaborated in the SI. Below,
we summarize the key ideas.

We first generate idea-sets for alter-agents such that some alters have more non-redundant ideas than
others (capturing popular and unpopular alters). Starting from the same initial network structure as
the empirical setup, the ego-agents gradually rewire their connections to increasingly follow the
popular alters. We use a rewiring probability parameter Pr, where Pr = 0 (no rewiring) results in
the initial network structure, and Pr = 1 (full rewiring) results in all of the egos following only the
top performing alters. Thus, Pr captures the network’s temporal evolution.
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Figure 8: (A) Illustration of inter-ego similarity. Egos E1 to E6 view the same stimulus a, and
independently generate a single idea each. At no inter-ego similarity, each of the stimulated ideas is
mutually different. At full inter-ego similarity, all of the stimulated ideas become the same. Panels
(B) and (C) show the total non-redundant idea counts in a network with m = 18 alters and n = 54
egos. As the rewiring probability Pr increases, more egos follow the same highly popular alters
in the network. In the absence of inter-ego similarity (panel B), an increase in Pr leads to a better
generation of non-redundant ideas. At full inter-ego similarity (panel C), Pr = 1 makes all the
stimulated ideas mutually redundant.

We simulate the consequent network-driven and cognitive effects on the egos’ ideation using three
key processes: (A) As rewiring takes place, more egos connect to the popular alters. This is a
network-driven process, which makes the stimuli sets overlapping for egos who follow the same
alters. (B) Given the stimuli set, the egos can generate stimulated ideas, which is a cognitive process.
Our empirical results show a positive association between the rarity of the stimuli and the generation
of novel ideas. To capture this, we consider three abstractions of the cognitive process, where the
statistical rarity of a stimulus idea affects the number of stimulated novel ideas in linear, sub-linear
and super-linear manners. (C) There can be similarities in the stimulated ideas of independently
ideating egos who share the same alters. This is again a network-driven process, as the similarity is
initiated/facilitated by the egos’ similar choices of peers. We consider two extreme cases: no inter-
ego similarity and full similarity, where all the ideas inspired by the same stimulus are mutually
different and exactly the same, respectively. Importantly, if any of these three key processes is taken
away, one cannot fully capture the insights from our empirical results.

Using the model, we explore various corner cases of network rewiring, inter-ego similarity, cognitive
stimulation and network size variables. We find that if there is no inter-ego similarity whatsoever,
process C loses relevance, and the cognitive stimulation mechanisms in process B become the key
to the creative outcomes of the ego-agents. As Pr increases, more novel ideas are then generated
due to better stimulation, and the network’s creative outcomes peak at Pr = 1. On the other hand, at
full inter-ego similarity, process B loses relevance, as all the stimulated ideas from a given stimulus
become exactly the same. At Pr = 1, all of the egos have the same stimuli. As a result, none
of the stimulated ideas are rare anymore and the net creative output of the network drops to zero.
While our empirical results of inter-ego similarity lie in between these extreme cases, the simulation
nonetheless clarifies the opportunities and constraints in a systematic manner (Figure 8).

These insights are robust to the various cognitive stimulation functions we considered in process B.
We find that as long as the cognitive stimulation function captures a positive stimulation effect of
a high quality/rare stimulus, the same outcomes are observed irrespective of whether the effect is
linear, sub-linear or super-linear. We further experimented with various network sizes and found the
effects to be robust in networks 3, 10 and 100 times larger than our experimental ones. A detailed
theoretical treatment of the model and the associated processes, for example beginning with a mean-
field analysis, remain part of our future work.

Discussion

Social cues and heuristics are ubiquitously used by humans for navigating through societal inter-
actions, and contribute to their immense success as a species. Here, we first explored how the
connectivity patterns in a creativity-centric dynamic network adapt to people’s performance cues.
From 6 independent trials, we found that the egos’ following/unfollowing patterns are governed sig-
nificantly by the novelty (average novelty ratings) and statistical rarity (non-redundant idea counts)
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of the alters’ ideas. These two metrics lead to an adjusted-R2 = 0.72 in predicting the relative
popularity of the alters. Perry-Smith et al.’s spiral model suggests that highly creative people will
enjoy increased visibility in a dynamic network (8). Our results validate that idea and explain the
relevant cues governing such tie formations. These dynamics are different from preferential attach-
ment, since the egos were blind to the existing follower counts/popularity of the alters. The use of a
bipartite network helped us keep the egos’ stimuli-sets uniform and understand the link update pat-
terns cleanly. However, pre-recording the alters’ ideas made the network unidirectional, prohibiting
us from testing the full spiral model.

Although the alters were passive actors, our results have implications for them as well. Consider
social media influencers, who act as third-party endorsers and shape audience perception through
blogs, tweets, and other social media channels. The rise of such micro-celebrity has inspired a lot of
research (e.g., (43)), and corporate brands are interested to leverage the marketing potential therein.
We find that the alters need to generate not only statistically rare ideas, but also ideas of high quality
and novelty to win more attention than others. This has implications for the influencers regarding
how to stay relevant and ahead of others, in parallel to the Red Queen hypothesis (44).

We confirmed that following high-performing alters is associated with better creative performance
of the egos. As the egos followed more high-performing alters, the overlap reduced between the
ego’s own ideas and the alters’ ideas—which can partly explain the positive stimulation of ideas.
In the dynamic networks, the egos showed a pattern of flocking behind the high-performing alters,
thereby improving their own chances of generating novel ideas. However, there was a counter-effect
that ego-pairs who followed the same alters in the dynamic condition had an increasing semantic
similarity with time. At the end of the fifth round, they had significantly higher semantic similarity
than ego-pairs who did not have both of their alters in common. This shows one way network
dynamicity can hurt original idea generation: choosing the same stimuli may inadvertently and
increasingly make people’s ideas similar to each other, despite independent ideation. Importantly,
these processes are driven by the egos’ own choices of alters, capturing the dynamic nature of real
social networks. Our simulation model captures these interplay between the network-driven and
cognitive processes.

These insights can lead to research efforts towards making social networks more creatively compe-
tent. Consider academicians who follow the same popular domain-experts on social media, seeking
inspirations for novel research. Indeed, high quality stimuli can help the followers generate high
quality ideas themselves. But at the same time, there can be similarities in the stimulated ideas of
the followers. Social network intervention strategies will then need to strike a sweet spot to help the
followers get the best out of their networks, e.g., by recommending diversified sets of followees to
people. If the high preforming alters act as gravitational force attracting and maintaining the egos’
connections, the semantic similarities among the followers’ contents could potentially signal when
the network needs intervention for re-stimulating ideation. The same arguments can apply to offline
social networks as well, e.g., in large-scale creative teams. This can be particularly pertinent for
groups known to gravitate towards strong personalities. As for an ego, there are implications that
seeking out high-quality inspirations can be worthwhile, but flocking behind popular people might
not always be optimal for one to stand out.

Drawing from relevant literature, our study settings were designed to reduce performance bottle-
necks and increase cognitive stimulation of the egos. The key bottlenecks known to affect per-
formance in brainstorming sessions (26, 27) were not present here: there was no evaluation ap-
prehension from peers (alters) due to asynchronous exposure, no social loafing as the individuals
were responsible for their own performance, and no production blocking as the egos could think on
their own in turn-1. Furthermore, the quiz at the end and the justifications for connection update
decisions recorded each round were in place to increase cognitive stimulation and and epistemic
motivation (26, 32, 33). As expected, the dynamic and static conditions, which had stimuli from
alters, enjoyed a significantly higher count of non-redundant ideas compared to the solo condition,
which had no stimulus.

To make the findings robust, we repeated our experiment for 6 independent trials. We reported ro-
bust out-of-sample R2 and adjusted-R2 results. The simulation model further helped us assess the
generality of the insights under various corner cases. However, our study is not without limitations.
The steep expenses associated with conducting the experiment prohibited us from collecting a larger
dataset. We conducted power analyses to ensure that the reported results have sufficient statistical
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power (see SI). The participants generated alternative uses of common objects, which hardly re-
sembles real-life creative challenges. The study settings prohibited us from exploring the effects of
bidirectional creative influence. Also, the study lasted for 5 rounds, which can be prohibitively short
to demonstrate the full effects of network dynamicity. Longitudinal studies with practical creative
challenges can generate further insights on the research questions.

Methods

Creativity Metrics

We operationalized creativity using the three following metrics, based on previous literature.

Non-redundant idea counts

To compute the non-redundant idea counts (34), we first rejected submissions that were infeasible
and not different from the given use. Then, the round-wise idea-sets were organized/binned to
collect the same ideas together. For binning, we followed the coding rules specified in (45) and in
the scoring key of Guilford’s Alternate Uses test1.

Then, we computed the statistical rarity of the ideas. An idea was determined to be non-redundant if
it was given by at most a threshold number of participants in a given pool of ideas. For the alters, the
threshold was set to 1, and the pool was set to be the round-wise idea-set of the 6 alters in the trial.
When comparing trial-wise dynamic and static egos, the threshold was heuristically set to 2, with
the pool being the round-wise idea-set of the 36 egos. In other words, if≥ 3 egos in a trial submitted
the same idea, it was no longer considered non-redundant. When comparing the data of the solo,
static and dynamic conditions aggregated over all trials, the threshold was once again heuristically
set to 2, and the pool was set to all the ideas generated by all these participants.

2 research assistants independently binned similar ideas together from the first 3 trials. They were
shown randomly ordered anonymized ideas. The non-redundant idea counts of the participants
computed based on their coding had a high agreement (Krippendorff’s α = 0.85; Spearman’s ρ =
0.92, p < 0.001, 95% C.I.= [0.885, 0.941]). Then, the first research assistant coded the rest of the
dataset, which was used in the analyses.

Creativity Quotient

Creativity Quotient, Q, accounts for both the quantity of ideas generated and the quantity of distinct
categories those ideas fall into (35, 36). If the ideas of a participant are very similar, they are likely
subtle variations of a small number of categories. Conversely, if they are very dissimilar, they likely
touched many categories—marking better creativity.

The computation of Q uses an information theoretic measure of semantic similarity derived from
WordNet (46). Concepts appear as syn-sets (synonym sets) in WordNet, and the nouns come with
an ‘is a’ relationship. We first remove stopwords and punctuations from the ideas, and run a spell-
checker. We then split each idea into its constituting set of concepts, and replace verbs and ad-
jectives with related nouns whenever possible. Then, we find the information content of each of
those concepts. Since the taxonomic structure of WordNet is organized in a meaningful way, con-
cepts with many hyponyms should convey less information than the ones with a small number of
hyponyms (37). Thus, infrequent concepts (e.g., leaf nodes) should hold more information than the
abstracting nodes. We therefore quantify the Information Content, I , of a concept c as,

I(c) =
log
(h(c)+1

w

)
log
(

1
w

) = 1− log(h(c) + 1)

log(w)
(2)

where h(c) is the number of hyponyms of concept c and w is the total number of concepts in the
taxonomy. The denominator normalizes the metric with respect to the most informative concept, to
have I ∈ [0, 1].

1Copyright @ 1960 by Sheridan Supply Co., all rights reserved, published by Mind Garden, Inc,
www.mindgarden.com.
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We then determine how similar a given pool of ideas (from a participant in a given round) are. We
compute the semantic similarities between every pair of concepts, c1 and c2, in the pool (47) using

sim(c1, c2) = 1−
(I(c1) + I(c2)− 2× simMSCA(c1, c2)

2

)
(3)

Here, the semantic similarity, sim(c1, c2), is a function of the amount of information the two con-
cepts have in common, simMSCA(c1, c2). This, in turn, is given by the information content of the
Most Specific Common Abstraction (MSCA) that subsumes both the concepts:

simMSCA(c1, c2) = max
c′∈S(c1,c2)

I(c′) (4)

where S(c1, c2) is the set of concepts subsuming c1 and c2.

We then compute the multi-information, Im, as the shared information across the response-set. This
is computed by first obtaining the maximum spanning tree from the network of concept similarity
values between concept pairs, and then summing over the edge weights in the max spanning tree.
Finally, Q is obtained by,

Q = N − Im (5)
where N is the total number of concepts in the idea pool.

Ratings

Each idea of the alters was rated on novelty by 36 egos in the trial, generating 38, 880 ratings in
total. The mean rating received by idea j is taken as the idea-level rating rj . For participant i in
round p, we compute the average novelty rating r̄(p)

i = mean(rj) for ideas j by i in p. We take the
mean rating received by each alter from each ego, and compute the consequent intra-class correlation
coefficient among the ego-raters in that trial. The mean intra-class correlation coefficient from all 6
trials was ICC(3, 36) = 0.945.

Additionally, each idea of the egos and solo participants was rated by at least 4 raters, hired sep-
arately from Amazon Mechanical Turk, resulting in 40, 320 ratings from 141 raters. For fairness,
each rater focused on one round in a given trial, and rated all the 36 egos’/solo participants’ ideas
in that round. The raters were first given 3 minutes to generate ideas on that round’s prompt them-
selves, to familiarize them with the task. Then they rated randomly presented ideas, guided by
instructions and examples. We find a positive mean intra-class correlation coefficient among the
raters, ICC(3, 4) = 0.317.

Measure of idea overlap

To measure the overlap between idea-sets A and B, we use the Jaccard Index:

J(A,B) =
|A ∩B|
|A ∪B|

. (6)

If A = B = ∅, we take J(A,B) = 1. We use the binning from non-redundant idea count computa-
tion to identify same entries in the idea-sets.

Measure of semantic dissimilarity

To measure the semantic dissimilarity of two idea-sets, we use the Word Mover’s Distance (41).
We first remove stop-words and punctuation. The dissimilarity of two idea-sets is computed by the
minimum Euclidean distance that the Word2Vec (40) embedded words of one idea-set need to travel
to reach the embedded words of another idea-set.
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1 Demographic information

Among the 288 participants we recruited from Amazon Mechanical Turk, 167 were male and 121
were female. Their ages ranged from 18 to 55+ (18y-24y: 30, 25y-34y: 129, 35y-44y: 81, 45y-54y:
23, 55y+: 25). The racial distribution was: White: 224, Asian: 15, Black or African American:
22, American Indian or Alaska Native: 15, other: 12. Among them, 15 participants belonged to
Hispanic or Latino ethnicity.

2 Supplementary figures

Figures S1 through S7 present additional results from the analysis, as referred to from the main
manuscript.

Figure S1: Trial-wise comparisons of cumulative non-redundant idea counts between popular and
unpopular alters. 2-tailed tests show the popular alters (p) to have significantly higher cumulative
counts over all rounds than unpopular alters (u) in all 6 trials, detailed as follows. Trial 1: mp =
17.0, mu = 9.5, t(4) = 5.222, p = 0.0064, 95% C.I. for mp − mu = [4.0, 11.0]; Trial 2:
mp = 21.5, mu = 12.8, t(4) = 2.879, p = 0.045, 95% C.I. for mp − mu = [2.1, 15.4]; Trial
3: mp = 25.0, mu = 14.0, t(4) = 6.351, p = 0.0031, 95% C.I. for mp −mu = [6.9, 15.1]; Trial
4: mp = 26.0, mu = 15.8, t(4) = 6.629, p = 0.0027, 95% C.I. for mp −mu = [6.5, 14.0]; Trial
5: mp = 25.3, mu = 15.0, t(4) = 6.609, p = 0.0027, 95% C.I. for mp −mu = [6.8, 13.9]; Trial
6: mp = 27.0, mu = 19.3, t(4) = 4.66, p = 0.0096, 95% C.I. for mp −mu = [3.8, 11.7].
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95% CI

Figure S2: Trial-wise comparisons of average novelty ratings between popular and unpopular alters.
2-tailed tests show the popular alters (p) to have significantly higher average novelty ratings over
all rounds than unpopular alters (u) in 5 out of 6 trials, detailed as follows. Trial 1: mp = 3.2,
mu = 3.0, t(4) = 3.675, p = 0.021, 95% C.I. for mp − mu = [0.1, 0.4]; Trial 2: mp = 3.1,
mu = 2.8, t(4) = 2.67, p = 0.0558, 95% C.I. for mp − mu = [0.04, 0.7]; Trial 3: mp = 3.2,
mu = 2.5, t(4) = 4.264, p = 0.013, 95% C.I. for mp − mu = [0.3, 1.0]; Trial 4: mp = 3.0,
mu = 2.6, t(4) = 4.207, p = 0.0136, 95% C.I. for mp − mu = [0.2, 0.6]; Trial 5: mp = 2.9,
mu = 2.4, t(4) = 5.98, p = 0.0039, 95% C.I. for mp − mu = [0.3, 0.7], Trial 6: mp = 3.0,
mu = 2.5, t(4) = 3.63, p = 0.022, 95% C.I. for mp −mu = [0.2, 0.8].
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Figure S3: Trial-wise comparisons of cumulative Q between popular and unpopular alters. 2-tailed
tests show the popular alters (p) to have significantly higher total Q scores over all rounds than
unpopular alters (u) in 3 of the trials, detailed as follows. Trial 1: mp = 72.6, mu = 38, t(4) =
4.102, p = 0.015, 95% C.I. for mp − mu = [14.7, 54.6]; Trial 2: mp = 57.9, mu = 36.1,
t(4) = 2.41, p = 0.073, 95% C.I. for mp − mu = [1.7, 41.8]; Trial 3: mp = 45.5, mu = 35.9,
t(4) = 1.572, p = 0.19, 95% C.I. for mp −mu = [−4.9, 24.2]; Trial 4: mp = 57.4, mu = 46.2,
t(4) = 1.44, p = 0.223, 95% C.I. for mp −mu = [−6.2, 28.6]; Trial 5: mp = 58.7, mu = 26.9,
t(4) = 2.962, p = 0.041, 95% C.I. for mp − mu = [7.5, 56.2]; Trial 6: mp = 54.1, mu = 35,
t(4) = 2.872, p = 0.045, 95% C.I. for mp −mu = [4.3, 34.0].
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Figure S4: Average overlap (measured with Jaccard Index) between idea-sets of egos’ turn-1 ideas
and their alters in various rounds. Comparisons are made among three cases of egos: those with
(i) both, (ii) only one and (iii) no alter(s) who are round-wise popular. As can be seen, egos who
follow 2 popular alters consistently show a lower overlap compared to the other two cases. 2-tailed
test results on the fifth round is given below. (i) vs (ii): m1 = 0.03, m2 = 0.1, t(145) = −7.03,
Bonferroni-corrected p < 0.001, 95% C.I. for m1 − m2 = [−0.088,−0.05]; (i) vs (iii): m1 =
0.03, m3 = 0.13, t(131) = −8.223, Bonferroni-corrected p < 0.001, 95% C.I. for m1 − m3 =
[−0.121,−0.074].
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Figure S5: Trial-wise comparisons of non-redundant idea counts between static and dynamic egos.
2-tailed tests are performed between the cumulative counts of static (s) and dynamic (d) conditions
at the end of all 5 rounds, as detailed in the following: Trial 1: ms = 10.89, md = 12.28, t(34) =
−0.968, p = 0.3397, 95% C.I. for ms −md = [−4.221, 1.444]; Trial 2: ms = 17.78, md = 17.33,
t(34) = 0.261, p = 0.7954, 95% C.I. for ms −md = [−2.914, 3.803]; Trial 3: ms = 19.5, md =
15.94, t(34) = 2.036, p = 0.0496, 95% C.I. for ms −md = [0.106, 7.005]; Trial 4: ms = 20.67,
md = 21.28, t(34) = −0.272, p = 0.7873, 95% C.I. for ms − md = [−5.050, 3.828]; Trial 5:
ms = 21.11, md = 18.28, t(34) = 1.415, p = 0.1662, 95% C.I. for ms −md = [−1.122, 6.789];
Trial 6: ms = 19.67, md = 19.67, t(34) = 0.0, p = 1.0, 95% C.I. for ms−md = [−3.280, 3.280].
Whiskers represent 95% C.I.
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95% CI

Figure S6: Trial-wise comparisons of average novelty ratings between dynamic and static egos.
2-tailed tests are performed between the average novelty ratings of dynamic (d) and static (s) con-
ditions over all 5 rounds, as detailed in the following: Trial 1: md = 2.93, ms = 2.98, t(34) =
−1.091, p = 0.283, 95% C.I. for md − mS = [−0.137, 0.04]; Trial 2: md = 3.05, ms = 3.01,
t(34) = 0.641, p = 0.526, 95% C.I. for md − ms = [−0.069, 0.136]; Trial 3: md = 2.88,
ms = 2.9, t(34) = −0.358, p = 0.723, 95% C.I. for md − ms = [−0.097, 0.067]; Trial 4:
md = 3.18, ms = 3.04, t(34) = 3.107, p = 0.0038, 95% C.I. for md −ms = [0.054, 0.241]; Trial
5: md = 3.1, ms = 3.07, t(34) = 0.495, p = 0.624, 95% C.I. for md−ms = [−0.084, 0.14]; Trial
6: md = 3.38, ms = 3.19, t(34) = 3.801, p = 0.00057, 95% C.I. for md −ms = [0.092, 0.292].
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Figure S7: Trial-wise comparisons of creativity quotients between static and dynamic egos. 2-tailed
tests results between the cumulative Q counts of the static (s) and dynamic (d) conditions at the
end of all 5 rounds is given in the following: Trial 1: ms = 55.71, md = 51.47, t(34) = 0.848,
p = 0.402, 95% C.I. for ms − md = [−5.628, 14.104]; Trial 2: ms = 56.28, md = 60.03,
t(34) = −0.9, p = 0.375, 95% C.I. for ms − md = [−11.976, 4.481]; Trial 3: ms = 61.52,
md = 64.08, t(34) = −0.548, p = 0.588, 95% C.I. for ms − md = [−11.833, 6.695]; Trial 4:
ms = 64.17, md = 67.8, t(34) = −0.69, p = 0.495, 95% C.I. for ms −md = [−14.01, 6.752];
Trial 5: ms = 58.65, md = 64.76, t(34) = −1.232, p = 0.227, 95% C.I. for ms − md =
[−15.912, 3.689]; Trial 6: ms = 55.64, md = 58.53, t(34) = −0.624, p = 0.537, 95% C.I. for
ms −md = [−12.033, 6.254]. Whiskers denote 95% C.I.
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Figure S8: (Top row) Simulation of the initial condition of the bipartite network (rewiring probability
Pr = 0). One realization of the stimuli idea set is shown here, where alters A1 and A6 generated
non-redundant ideas (p, q and r, s respectively). Alters A2 through A5 generated ideas a, b and
c, which are not unique and were submitted by multiple alters. Thus, A1 and A6 are the top-
performing alters here. The egos are connected to the alters in the same pattern as used in the
original experiment. 6 egos are shown for demonstration purposes. The table to the left shows the
computation of the exposure sets of the egos. (Bottom row) The evolved network for Pr = 1, where
all the egos follow the same top-performing alters. This results in making all of the egos’ exposure
sets the same, as shown in the table on the left.

3 Simulation model

We simulate the study outcomes using three key building blocks: (A) the network rewiring dynam-
ics, (B) the cognitive stimulation mechanisms, and (C) the inter-ego similarities. In (A), we generate
the initial network condition, the alters’ ideas, the egos’ exposure sets and the evolution of those ex-
posure sets that stem from network rewiring. For generating the stimulated ideas based on these
exposure sets, in (B), we abstract the cognitive mechanisms using linear, sub-linear and super-linear
stimulation functions. Finally, in (C), we explore the outcomes in two corner cases of inter-ego
similarities: full similarity and no similarity. We describe each block in detail below. We make our
code available for easy replication of the model.

(A) Capturing the network dynamics

Network initialization. Here, we adopt the same bipartite network settings as used in the empirical
explorations. We first consider m = 6 alters and n = 18 egos, and initialize their connections in the
same initial pattern as the original experiment. Each of the alters i has an idea set Ai, which is used
as the stimuli for the egos. Later, we experiment with larger networks that have m = 18, 60, and
600, with n = 3m for each of those. We connect each ego to 2 alters.

Stimuli set generation. Following the empirical observations in our study, we generate idea-sets
Ai for alters i such that some of the alters have larger unique idea counts than others (popular
and unpopular alters, respectively). To simulate this, we start with two pools (sets) of symbols
representing unique ideas: U1 and U2. By having |U1| << |U2|, we ensure that ideas sampled with
replacement from U1 will be more common than those from U2. In other words, we simulate U1 to
include ideas that occur to people with a high probability, and U2 to consist of rare ideas.
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We assume that each alter i generates a fixed number of |A| ideas. Each idea in Ai comes from pool
U1 with probability αi, or from U2 with probability 1−αi. For a random one-third of the alters, we
take 0 ≤ αi ≤ 0.5 (high-performing alters), and for others 0.5 < α ≤ 1 (low-performing alters).
This makes the idea sets Ai non-uniform, with the high-performing alters having a higher unique
idea count than the low-performing alters, as shown in the top row of Figure S8.

Exposure set calculation. For each ego j, we take the set of ideas they are exposed to as the
exposure set Ej = Ai1 ∪Ai2 , where alters i1 and i2 are ego j’s peers.

Evolution of exposure set. With time (e.g., with rounds in our study), the egos in the dynamic
condition can rewire their connections to the alters, which the static egos cannot. In the empirical
results, we saw that the connection changes per ego dropped with time (p < 1e− 4 for the negative
slope) as more egos followed the high-performing popular alters. We define a rewiring probability
Pr that captures how much the network deviates from its initial configuration (Pr = 0) to the
extreme case where two popular alters win the attention of all the egos (Pr = 1). Therefore, instead
of simulating the dynamic network through time to explore its temporal effects, we can equivalently
sweep over the rewiring probability Pr and explore its effects on the exposure sets of the egos.
Figure S8 shows the idea. With higher Pr, the exposure sets of the egos become more uniform, as
even the rare stimuli ideas from pool U2 become common due to increased exposure.

(B) Capturing cognitive stimulation

Given the exposure set Ej , an ego j can generate the following: with probability p1, s/he can gener-
ate ideas that are substantially inspired/stimulated by ideas from the exposure set, with probability
p2 s/he can generate ideas with negligible or no stimulation from the exposure set ideas, and with
probability p3 s/he can generate ideas that are inspired by the exposure set but do not fulfill the study
requirements of being substantially different than the stimuli and also feasible. For our purposes of
exploring the effects of the network dynamics, we can set p2 = p3 = 0, which makes p1 = 1.
In other words, we are assuming that an ego only generates ideas that are inspired by the exposure
set. Any effect from p2 and p3 should occur similarly in both static and dynamic conditions as the
participants are randomly placed, and therefore act as mere random noise that we set to 0. This
leads to the set of stimulated ideas for ego j, Sj = {e′1} ∪ {e′2} ∪ ... ∪ {e′k} where each idea in the
exposure set ek ∈ Ej leads to a set of ideas S(ek) = {e′k}, and the union of all such idea sets from
all ek ∈ Ej are contained in Sj .

The empirical results show a positive stimulation of ideas in the dynamic and static conditions
compared to the solo condition (no stimuli). Therefore we can reasonably ignore the possibility that
a stimulus can hurt the ideation process (negative association between |E| and |S|). Also, our choice
of having p1 = 1 in the previous paragraph gets rid of the possibility of no association between |E|
and |S|. This leaves a positive stimulation effect, captured by a positive association between |E| and
|S|.
As argued in the main manuscript, less overlap between an ego’s own ideas and his/her al-
ters’ ideas can help in stimulating further novel ideas in the ego. Again, the rarer a stimulus
idea e is, the less overlap can be expected to exist between e and the ego’s own ideas, which
can lead to a higher chance of stimulation. We measure the rarity of each stimulus idea as

Re = 1− Number of times the idea was submitted by the alters
total number of alters’ ideas . Therefore, we have the number of

ideas stimulated by e, |S(e)| ∝ f(Re), where f is a stimulation function. We consider three cases of
this stimulation relation: (1) linear: |S(e)| = kRe, (2) sub-linear: |S(e)| = k

√
Re, (3) super-linear:

|S(e)| = kR2
e , where k is a proportionality constant.

(C) Capturing inter-ego similarity

Every ego j generates stimulated ideas Sj independently of other egos. However, when the network
evolves such that the high-performing alters become highly popular (high rewiring probability Pr),
the exposure sets of the egos can become similar. We consider two extreme cases in this regard: (1)
No similarity: every ego j with the same stimulus idea e generates completely different stimulated
ideas in S(e), and (2) Full similarity: every ego j with the same stimulus idea e generates exactly
the same stimulated ideas in S(e).
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1 2 3 4 5 6

1 2 3 4 5 6

Figure S9: (Top row) An illustration of one stimulus e being shown to 6 independent egos, where
the egos generate one stimulated idea each. (Bottom row) Two extreme cases: (1) No similarity/re-
dundancy, where each stimulated idea is unique, and (2) Full similarity/redundancy, where all the
stimulated ideas turn out to be the same. The dynamic network suffers in case of increased similarity,
since the rewiring process exposes an increased number of people to the same stimulus e.

The first case will have the least network effect due to the complete uniqueness of every stimulated
idea. But in the second case, the dynamic network will suffer from generating more redundant ideas
among the participants. An example is shown in Figure S9.

To evaluate performance of the alters, we set a non-redundancy threshold of 1, as explained in the
main manuscript. In other words, any idea that is generated by at most one alter is considered non-
redundant. For the egos, we take an idea to be non-redundant if it is generated by at most 15% of
the number of egos on the simulation.

Experiments

We explore the following cases in our simulation:

Network size. We experiment with bipartite networks consisting of m = {6, 18, 60, 600} alters and
n = 3m egos. Each ego is connected to 2 alters using the same initial configuration pattern as the
original experiment. The results of the four cases are shown in Figures S10-S13 respectively.

Inter-ego similarity. For each network size, we consider both of the cases of no inter-ego similarity
and full similarity. In each of the Figures S10-S13, the left column and right columns respectively
show the two cases.

Cognitive stimulation functions. For each of the inter-ego similarity cases, we experiment with
three stimulation functions, relating the rarity of the stimulus ideas to the number of novel ideas in
sub-linear, linear and super-linear ways. These results are shown in the top, middle and bottom rows
of the Figures S10-S13.

Rewiring probabilities. For the dynamic condition, we sweep through the rewiring probability Pr

from 0 (initial condition) to 1 (all of the egos follow only the two most popular alters). For the static
control, we keep Pr fixed at 0.

Results and Discussion

The results are shown in Figures S10-S13. When there is no similarity/redundancy among the egos’
ideas generated in response to the same stimuli, the dynamic condition enjoys an advantage over

12



the static condition as the rewiring probability Pr increases. The network’s performance maximizes
at Pr = 1. But when there is full redundancy, none of the ideas in the dynamic condition remains
unique anymore as Pr approaches 1, thereby hurting the creative outcomes. This result is robust to
various stimulation functions we chose, and also to network size.

The simulation highlights the roles played by the network dynamics and the cognitive stimulation
mechanism in the creative ideation process. First, the rewiring process makes the stimuli set similar
with time for the egos in the dynamic condition, which is a purely network-driven process. Second,
the redundancy among the egos’ ideas in response to the same stimulus also becomes a manifesta-
tion of the network dynamics, as the redundancy is initiated/facilitated by the egos’ similar choices
of peers. These two factors, taken together, negatively impact the creative outcomes in the dynamic
condition. On the other hand, the stimulation process of the egos’ ideas is driven by cognitive mech-
anisms. The various stimulation functions we experimented with (f ) benefit the creative outcomes
in varying degrees. However, as the simulation demonstrates, sufficient redundancy in the egos’
ideas has the ability to overpower the cognitive stimulation benefits. In our empirical data, we find
evidence of both of the network and cognitive factors to be present concurrently, which are captured
by this simulation model.
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Figure S10: Simulation results for m = 6 alters and n = 18 egos, computed for each of the three
stimulation functions. The x-axis denotes rewiring probability Pr, where Pr = 0 denotes the initial
network structure and Pr = 1 denotes the extreme case where all the egos follow the same two
popular alters. The left column panels (A, C and E) show the simulation results for the case of no
redundancy among the ideas generated by different egos in response to the same stimulus. The right
column panels (B, D and F) show results for full redundancy cases. The top row, middle row and
bottom row are the simulation results for the sub-linear, linear and super-linear stimulation functions,
respectively. As can be seen, when there is no redundancy, the dynamic networks outperform the
static ones as Pr increases. However, when there is redundancy, the dynamic network suffers as
more egos follow the same alters at higher Pr, eventually making all the stimulated ideas redundant
and therefore not creative. Slope parameter k = 20 has been used in the stimulation functions.
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Figure S11: Simulation results for m = 18 alters and n = 54 egos.
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Figure S12: Simulation results for m = 60 alters and n = 180 egos.
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Figure S13: Simulation results for m = 600 alters and n = 1800 egos.
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4 Study interface

The study was conducted with approval from the University IRB. No personally identifiable infor-
mation was collected from the participants. The web interfaces used in the experiment are shown
below, using pseudo usernames. Some of the materials are redacted to ensure copyright compliance
of using materials from Guilford’s Alternate Uses test.

Figure S14: Instruction page for the egos of the static condition. Here, the first point is redacted to
ensure copyright compliance of using the Guilford’s test. This first point provides instructions for
idea generation with examples. For the alters and solo participants, only the first point was shown.
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Figure S15: Instruction page for the egos of the dynamic condition.
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Figure S16: Initial idea submission interface. This was used in turn-1 for the egos of static and
dynamic conditions, as well as for the alters and solo participants.

Figure S17: Turn-2 interface for the egos of static and dynamic conditions. The alters’ ideas are
shown on the left-side cards.
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Figure S18: Rating interface for the egos in the static condition. The egos rated the ideas of all 6
alters in the respective trial.
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Figure S19: Rating and following/unfollowing interface for the egos in the dynamic condition.
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5 Supplementary tables

Table S1: Performance comparisons between popular (p) and unpopular (u) alters. 2-tailed tests.
Data aggregated over all trials, np = 13, nu = 23.

Metric mp mu t-statistic df p 95% C.I. for mp −mu

Non-redundant Idea Counts 23.8 14.4 7.291 34 < 0.001 [6.9, 12]
Average Ratings 3.1 2.6 5.7 34 < 0.001 [0.3, 0.6]

Creativity Quotient 57.8 36.7 5.81 34 < 0.001 [13.9, 28.2]

Table S2: Omnibus test results for analyzing the overlaps between the egos’ turn-1 ideas and their
alters’ ideas. The overlap (Jaccard index) is the response variable. The analysis of variance of
aligned rank transformed data is run on a mixed effects model with two factors: the number of
popular alters of the egos (‘Group factor’, 3 levels) and RoundID (‘Round factor’, 5 levels). The
degrees of freedom are specified using the Kenward-Roger method. Each RoundID has nr = 216
entries, one from each ego. Groups (i), (ii) and (iii), as defined in the main text, have ni = 273,
nii = 476, and niii = 331 entries respectively.

Df Df.res F Pr(> F )
NumPopularAlters (Group factor) 2 669.84 66.526 < 2.22e− 16

RoundID (Round factor) 4 866.07 57.307 < 2.22e− 16
NumPopularAlters:RoundID 8 940.38 8.474 3.561e− 11

Table S3: Post-hoc analysis among the three levels in the Group factor from the fitted model reported
in Table S2. The degrees of freedom are specified using the Kenward-Roger method. The p-values
are adjusted using Holm’s sequential Bonferroni procedure.

Contrast Estimate SE df t p
Group (iii)-Group (ii) 130 23.4 574 5.555 < 0.001
Group (iii)-Group (i) 308 26.8 597 11.481 < 0.001
Group (ii)-Group (i) 178 23.6 887 7.519 < 0.001

Table S4: Omnibus test results for analyzing the egos’ turn-2 performances. Three separate models
are fitted for the three creativity metrics as the response variables. The analysis of variance of
aligned rank transformed data is run on a mixed effects model with two factors: the number of
popular alters of the egos (‘Group factor’, 3 levels) and RoundID (‘Round factor’, 5 levels). The
degrees of freedom are specified using the Kenward-Roger method. Each RoundID has nr = 216
entries, one from each ego. Groups (i), (ii) and (iii), as defined in the main text, have ni = 273,
nii = 476, and niii = 331 entries respectively.

Metric: Non-redundant Idea Counts
Df Df.res F Pr(> F )

NumPopularAlters (Group factor) 2 825.86 3.701 0.025 *
RoundID (Round factor) 4 862.74 3.265 0.011 *

NumPopularAlters:RoundID 8 913.51 0.513 0.847

Metric: Average Novelty Ratings
Df Df.res F Pr(> F )

NumPopularAlters (Group factor) 2 535.47 11.852 9.19e− 6 ***
RoundID (Round factor) 4 869.13 8.361 1.28e− 6 ***

NumPopularAlters:RoundID 8 973.46 1.409 0.189

Metric: Creativity Quotient
Df Df.res F Pr(> F )

NumPopularAlters (Group factor) 2 1036.36 6.657 0.0013 **
RoundID (Round factor) 4 857.72 14.836 9.98e− 12 ***

NumPopularAlters:RoundID 8 880.30 1.792 0.075
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Table S5: Post-hoc analysis among the three levels in the Group factor from the three fitted models
reported in Table S4. The degrees of freedom are specified using the Kenward-Roger method. The
p-values are adjusted using Holm’s sequential Bonferroni procedure.

Metric: Non-redundant Idea Counts
Contrast Estimate SE df t p

Group (iii)-Group (ii) −70.0 26.0 727 −2.689 0.022
Group (iii)-Group (i) −57.6 29.7 747 −1.936 0.106
Group (ii)-Group (i) 12.5 25.3 1014 0.495 0.621

Metric: Average Novelty Ratings
Contrast Estimate SE df t p

Group (iii)-Group (ii) −79.4 23.4 458 −3.399 0.0015
Group (iii)-Group (i) −127.8 26.8 483 −4.759 < 0.0001
Group (ii)-Group (i) −48.3 24.5 721 −1.971 0.0491

Metric: Creativity Quotient
Contrast Estimate SE df t p

Group (iii)-Group (ii) −85.814 24.6 1016 −3.495 0.0015
Group (iii)-Group (i) −85.475 27.9 1022 −3.062 0.0045
Group (ii)-Group (i) 0.339 22.2 1050 0.015 0.9878

Table S6: Semantic dissimilarity comparisons among node-pairs with 0, 1 and 2 common alter(s)
at the end of the 5th round. Node-pairs with 2 common alters were significantly less dissimilar than
0 and 1 common alter cases. 2-tailed tests, data aggregated over all trials. Number of node-pairs:
n2 = 170, n1 = 464, n0 = 284, where the subscripts denote the number of common alters of the
node pairs. All p-values are Bonferroni-corrected.

Means t df p 95% C.I.
2 vs 0 common alter(s) m2 = 3.01, m0 = 3.22 −2.962 452 < 0.01 m2 −m0 = [−0.36,−0.07]
2 vs 1 common alter(s) m2 = 3.01, m1 = 3.19 −2.788 632 < 0.02 m2 −m1 = [−0.31,−0.05]

Table S7: Individual-level comparisons of the total non-redundant idea counts of the egos in the three
study conditions. 2-tailed tests, data aggregated over all trials. Number of observations: Dynamic:
nd = 108, Static: ns = 108, Solo: nc = 36. All p-values are Bonferroni-corrected.

Means t df p 95% C.I.
Dynamic (d) vs Solo (c) md = 6.33, mc = 4.44 2.7 142 < 0.03 md −mc = [0.52, 3.26]

Static (s) vs Solo (c) ms = 6.77, mc = 4.44 2.898 142 < 0.02 ms −mc = [0.75, 3.90]
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6 Power analysis for sample sizes

Link update patterns in the network evolution. In Table S8, we present the a priori power analysis
of sample sizes using the t-test (difference between two independent means) given alpha, power
and effect size. The effect sizes are determined from the observed data, while the allocation ratio
is determined from the ratio of popular and unpopular alter counts observed in the data. To be
conservative, we used 1.5 times larger standard deviations within each group than the original data,
to allow for a larger noise margin.

Table S8: Power analysis: Link update patterns in the network evolution

Metric Alpha Power Std Allocation Calculated Calculated Actual
factor ratio (Np/Nu) effect size sample size sample size

Non-redun. Idea Ct. 0.05 0.8 1.5 0.565 1.72 14 36
Avg. Novelty Ratings 0.05 0.8 1.5 0.565 1.48 18 36
Creativity Quotient 0.05 0.8 1.5 0.565 1.33 22 36

Exposure to high-performing alters is associated with better creative performances of the egos.
In Table S9, we present the a priori power analysis of sample sizes using the F-test, given alpha,
power and effect size. The effect sizes are determined from the observed data.

Table S9: Power analysis: Exposure to high-performing alters is associated with better creative
performances of the egos

Metric Alpha Power Calculated Calculated Actual
effect size sample size sample size

Jaccard Index 0.05 0.8 0.32 99 1080
Non-redundant Idea Counts 0.05 0.8 0.12 714 1080

Average Novelty Ratings 0.05 0.8 0.15 408 1080
Creativity Quotient 0.05 0.8 0.19 261 1080

Following the same alters introduces semantic similarities in the egos’ ideas. In Table S10, we
present the a priori power analysis of sample sizes using the F-test, given alpha, power and effect
size. The effect sizes are determined from the observed data.

Table S10: Power analysis: Following the same alters introduces semantic similarities in the egos’
ideas

Alpha Power Calculated Calculated Actual
effect size sample size sample size

0.05 0.8 0.104 882 918

Individual creative performance comparisons among various study conditions. In Table S11,
we present the a priori power analysis of sample sizes using the F-test, given alpha, power and effect
size. The effect sizes are determined from the observed data.

Table S11: Power analysis: Individual creative performance comparisons among various study con-
ditions

Alpha Power Calculated Calculated Actual
effect size sample size sample size

0.05 0.8 0.2 246 252
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