
Perceptions of Non-CS Majors in Intro Programming:
The Rise of the Conversational Programmer

Parmit K. Chilana1, Celena Alcock1, Shruti Dembla1, Anson Ho1, Ada Hurst1, Brett Armstrong1, and Philip J. Guo2
1University of Waterloo
Waterloo, ON, Canada

2University of Rochester
Rochester, NY, USA

Abstract— Despite the enthusiasm and initiatives for making
programming accessible to students outside Computer Science (CS),
unfortunately, there are still many unanswered questions about how
we should be teaching programming to engineers, scientists, artists or
other non-CS majors. We present an in-depth case study of first-year
management engineering students enrolled in a required introductory
programming course at a large North American university. Based on
an inductive analysis of one-on-one interviews, surveys, and weekly
observations, we provide insights into students’ motivations, career
goals, perceptions of programming, and reactions to the Java and
Processing languages. One of our key findings is that between the
traditional classification of non-programmers vs. programmers, there
exists a category of conversational programmers who do not
necessarily want to be professional programmers or even end-user
programmers, but want to learn programming so that they can speak
in the “programmer’s language” and improve their perceived job
marketability in the software industry.

Keywords— Computer science education; computational
thinking; programming for non-CS majors

I. INTRODUCTION
The growing demand for a technology-savvy workforce in the
21st century has stirred a number of debates1 around how to
best equip college graduates with computational thinking and
computer programming skills. Some universities have
introduced special mandates for teaching programming to
non-Computer Science (CS) majors in specific disciplines,
such as Science, Engineering, and Arts [9]. Other institutions
(e.g., Georgia Tech) have gone as far as requiring all non-CS
majors to enroll in at least one programming course to satisfy
graduation requirements [11].

Despite the enthusiasm and growing initiatives for making
programming accessible to everyone, unfortunately, there are
many unanswered questions about what actually works or
does not work in a classroom of engineers, scientists, artists or
other non-CS majors [14]. One root problem is our lack of
understanding of the non-CS university student population,
which is far larger and less researched than the population of
CS majors. Guzdial [14] argues that most of our intuitions and
assumptions about teaching programming are based on
experiences of first-year CS courses: so, what are the actual
needs, perceptions, motivations, and learning strategies of
non-CS students who are taking programming courses?

1 http://www.nytimes.com/2012/04/01/business/computer-science-for-
non-majors-takes-many-forms.html

Another open question is about the perceived benefits of
programming skills among non-CS students. One prevalent
assumption is that non-CS majors, particularly in STEM
fields, will likely become end-user programmers and write
programs to support their domain-specific work [3,17,24].
But, is that necessarily the case for all non-CS students? Or is
there some other value proposition for learning programming
if the desired goal is neither to become a professional
programmer nor an end-user programmer?

In this paper, we investigate these questions from the
perspective of non-CS majors enrolled in management
engineering, an interdisciplinary engineering undergraduate
program. This population is intriguing because unlike students
in biology, business, or fine arts, management engineers
receive training that crosses boundaries of multiple
disciplines, including industrial engineering, management
information systems, operations research, and behavioral
sciences. Since these types of interdisciplinary undergraduate
programs are becoming increasingly prevalent (particularly
with the emerging Informatics and Data Science movements
[23]), it is important to understand how the enrolled students’
goals and perceptions are shaped by exposure to
programming.

The research site for our study was a required first-year
programming course for management engineering students
taught in its home department. The 13-week course introduced
basic programming concepts through the Processing language
for the first two weeks and then focused on the fundamentals
of Java. We used a mixed-method approach for our data
collection, carrying out 25 one-on-one interviews, 2 surveys at
the beginning and near the end of the course, respectively, and
10 sessions of 2-hour classroom observations. We focused our
investigation on understanding management engineering
students’ motivations, career goals, perceptions of
programmers and programming, and reactions to code.

One key finding from our study was that even though only 7%
of students listed “programmer” as an ideal career choice, over
73% of students indicated interest in continuing to learn
programming beyond this first course. Not surprisingly, half
of these management engineering students wanted to develop
skills for being able to work on end-user programming tasks
(such as data analysis and project management). However,
further analysis of our data showed two other trends as to why
the other students valued programming literacy: 1) to

understand the work of professional programmers and
establish common ground in communication and, 2) to
increase the perceived marketability of their skills for future
internships and jobs. We characterize this subgroup as
conversational programmers—students who want to be
literate in programming not for the sake of becoming
professional or end-user programmers, but for the pragmatic
reason of being able to converse in the “programmer’s
language” and improving their perceived marketability in the
software industry. Our initial results suggest that these
conversational programmers perceive industry-standard
languages (e.g., Java) to be more beneficial than visual or
domain-specific teaching languages (e.g., Processing) that
simplify programming syntax.

Our main contribution in this paper is in providing empirical
evidence that shows that among the traditional classification
of non-programmers vs. end-user programmers vs.
professional programmers, there exists a category of
conversational programmers who fall between the spectrum of
non-programmers and end-user programmers and who want to
learn to “speak the programmer’s language”. Given the
diversity of non-CS students coming into introductory
programming classrooms, there is a greater need to better
understand these students’ perceptions and enthusiasm for
programming. In our discussion, we tackle the question of
how we should be thinking about training conversational
programmers and non-CS majors in general and how we can
strike a balance between teaching programming for
intellectual enrichment vs. job marketability.

II. RELATED WORK
Despite decades of research in computing education, the
existing literature mostly focuses on the experiences of
teaching programming to first-year CS students—there are
few direct investigations of the experiences of non-CS majors.
Still, many recommendations have been made for simplifying
introductory programming courses that are relevant for non-
CS majors.

Lightweight introductory CS courses: Many languages have
been used throughout the years for teaching introductory CS
courses (Java, C, and C++ top the list of the most widely used
programming languages in the last two decades [21,25]).
There have been many debates and concerns around how to
balance the need to teach such mainstream languages without
adding extra complexity to introducing CS concepts,
especially for novices [5,15,20]. One approach advocated for
teaching non-CS students is to take a subset of the content
from a course for CS majors [9,10,18,26] and create a
“lightweight” introduction. This approach simplifies the intro
CS content by focusing on programming fundamentals, while
still introducing a widely-used language. Although there is
some evidence that tailoring traditional intro CS courses to
non-CS majors can be successful, we do not know if this
applies to all categories of non-CS majors or if some non-CS
majors are more likely to benefit. The programming course
that is the subject of our study used the approach of creating a

“lightweight” introduction (using Processing), while still using
Java as the main programming language and curriculum
adapted from an introductory CS course.

Visual languages that simplify programming: Instead of
teaching mainstream programming languages, some
researchers argue for the use of visual programming to
simplify the teaching of complex concepts. Visual
programming languages allow users to visually demonstrate or
sketch their program flow, rather than using commands,
pointers, and abstract symbols [1, 2]. Visual programming
environments based on storytelling metaphors, such as Scratch
[22] or Alice [16], have been shown to be particularly
successful at introducing basic programming concepts by
letting students create multimedia animations. Similar
recommendations have been embodied in efforts such as
RAPTOR [4] that uses flowcharts to demonstrate complex
concepts and App Inventor [28] that focuses on visual mobile
application development.

A recent trend has been to use the Processing2 language in
intro programming courses. Processing is an open-source
language derived from Java that is designed to allow
programmers to easily add graphics, animation, media, and
user interaction to their programs. This language has been
particularly appealing for teaching first-year students [19]
because of the simplicity in setting up the development
environment and creating interactive programs. Processing
offers many built-in methods that allow students to tackle a
variety of problems without getting too caught up in
programming logic and syntax early on. In our study, we shed
light on how the participants reacted to Processing, the
transition to Java later in the course, and some of the tensions
around ease-of-learning vs. future marketability.

Teaching programming in context: Another teaching
approach for non-CS majors has been to create completely
new courses that focus on programming in the context of other
computational tasks For example, in the media computation
course at Georgia Tech [3,11,13], Arts students get an
introduction to programming by working with popular
media—manipulating filters on images, editing sounds in
audio files, writing scripts to extract content from the Web,
creating animations, and so forth. In the software carpentry
initiative [27], scientists are taught basic computing skills and
use of command-line scripting tools to make them more
efficient in scientific computation. There have also been
efforts to teach domain-specific programming to experts such
as professional designers who often learn programming skills
“on the job” in the context of their daily design work [7]. The
underlying assumption of teaching programming “in context”
is that students work on end-user programming tasks in their
respective domains. However, as we found in our study, even
though most of the students wanted to take other programming
courses, a portion of the management engineering students

2 http://www.processing.org

were interested only in programming literacy and not in
becoming end-user programmers.

In summary, prior work has made a number of
recommendations for simplifying intro CS curricula and
programming languages to accommodate the needs of novice
programmers and non-CS majors, but the recommendations
have not necessarily taken into account the diversity within
the non-CS student population. Furthermore, with the rise of
interdisciplinary programs, we can no longer assume that what
works for a particular group of scientists, artists, or engineers
will necessarily be applicable to students who are enrolled in
interdisciplinary programs. Our case study adds detailed
insights into the perceptions, reactions, and goals of
interdisciplinary management engineers and how they differ
from previous characterizations of non-CS majors in intro
programming.

III. RESEARCH SITE AND METHOD

A. Research Site
We conducted this study in an Introduction to Computer
Programming course offered as part of the management
engineering undergraduate program at a large North American
university. Management engineering is an emerging discipline
that concerns the engineering (i.e., designing, planning or
operating) of management systems. The program can be
viewed as a modern form of traditional industrial engineering,
with the new take reflecting (in part) the all-encompassing use
of information systems in contemporary organizations.

The management engineering curriculum incorporates topics
pertaining to operations management, logistics and supply
chain management, inventory control, economics, accounting,
organizational studies, and design of information systems [8].
All first-year students in the management engineering
program are required to take the introductory programming
course taught in the home department. All students in the
program are also required to participate in the cooperative
education internship program (co-op) for at least five terms
during their study. Students can earn this experience in a
variety of industries, with a majority of management
engineering students typically working in the manufacturing,
high-tech, retail, and financial industries.

The course that was the subject of this study introduced
programming fundamentals in the Processing language for the
first 2 weeks and transitioned to Java for the remaining 11
weeks. The course topics included basic components of
algorithms, primitive operations, variables, sequencing
operations, conditionals and branching, subroutines, problem
decomposition, abstraction, file-based input and output, use of
a modern development environment, pointers/references, and
basic data structures, such as arrays.

B. Study Methods
We collected data for this study using three different methods:

Surveys: Two of the authors distributed two survey
questionnaires to students enrolled in the course: the first

survey was distributed at the beginning of the course (phase 1)
and the second near the end of the course (phase 2). The
survey was voluntary and did not affect student grades nor did
the instructor have any knowledge of who participated. The
surveys tried to capture the students’ perceptions of the course
and programming, and their overall career goals. At the end of
the surveys, students could opt-in to participate in a brief
interview in two different intervals.

The survey in phase 1 consisted of questions about prior
programming experience and reactions to the introduction to
Processing. The survey in Phase 2 focused on Java and the
transition from Processing to Java. It included questions about
how confident students were using the Java programming
language and their reactions to syntax. The surveys also had
questions about how useful they thought it was to learn more
programming languages, if they would consider taking more
programming courses, what they would do with programming,
their ideal future jobs and career goals related to their major.

We received 51 responses to the survey in Phase 1 (response
rate of 69%) and 56 responses to the survey in Phase 2
(response rate of 75%). We attribute the high response rate to
the surveys being short and distributed on paper during two of
the tutorial sessions where students often had downtime
between in-class exercises.

One-on-one interviews: Based on the survey responses, two
of the authors recruited 12 interviewees for Phase 1 of the
study, and 13 interviewees for Phase 2 (both phases had
separate sets of interviewees). The interviews lasted around 30
minutes on average and were semi-structured in format.

Both rounds of interviews focused on participants’ prior
programming experiences, their perceptions about
programming before and after taking the course, their
reactions to learning Processing vs. Java, what the students
wanted to do for their co-op internships in industry, what they
want to do after graduation, and their perceptions around the
value of learning more programming.

Weekly observations: Four of the authors carried out weekly
observations during a 2-hour tutorial session for the course.
These observations were unstructured: the authors took
detailed de-identified field notes in their notebook about
students’ participation in the tutorial activities, what questions
they were asking, where they were having confusions or
difficulties, and when they were asking for help.

C. Analysis and Presentation of Results
We audiotaped and transcribed all of the interviews and
observation notes. All transcripts were organized, coded, and
analyzed using the NVivo data analysis software. We used a
bottom-up inductive analysis approach to explore different
facets of the students’ narratives and identified recurring
themes.

Since our interviews, surveys, and observations produced a
large amount of data, we present our results in terms of the
major themes that emerged.

IV. WHO ARE MANAGEMENT ENGINEERS?
We first present the overall demographics of our student
population, since it differs not only from a typical CS major
population that has been well studied, but also from
traditional non-CS students due to the interdisciplinary
training that management engineers receive. Furthermore,
since these students were expected to start their first co-op
work term at the end of their first year, we found that most of
them were already aware of how they would need to market
their skills for competitive co-op positions (which is typically
not the case for undergraduates in other programs without co-
op).

In our interviews, we first probed into why students enrolled
into the management engineering program. Many of them
said they found the interdisciplinary nature of the program to
be appealing. For example, one participant (P12) explained:

It [the program] lets me experiment with a bunch of
different fields…I never knew what kind of specific
engineering field I wanted to narrow down to…while
doing management engineering, it's like I'm learning a
bit of everything from every other field and at the end I
have to work with multi disciplinary teams…(P12)

In our survey, respondents listed a number of different career
paths as their ideal choice. We classified the free-form
responses into 9 higher-level categories (top 6 categories that
received at least 5% of responses are shown in Figure 1). Most
management engineering students were enthusiastic about
taking on jobs such as a project manager, becoming a business
executive, such as a CEO, or owning a business. Only 7%
listed programmer as an ideal career choice. (Note that 29% of
respondents did not answer this survey question or wrote that
they were not sure). These expectations bear a very limited
resemblance to actual post-graduation employment. In
particular, over 70% of this program’s graduates work as
management consultants or business analysts3. These roles can
be in a variety of contexts including high-tech and supply
chain. We do not know how much end-user programming is
included in these positions, but we do know that some of these
jobs have involved end-user programming. About 10% of the
graduates work in project/program/product management roles.
Only a small minority (~7%) become full-time programmers,
and an even smaller minority (3%) become entrepreneurs. The
remaining graduates fulfill traditional industrial engineering
positions or go on to graduate studies.

According to our survey data, 72% of the students had no
formal exposure to programming before taking this course and
91% were taking a formal course in Java for the first time.
(12% of students mentioned getting exposure to languages
such as C#, Visual Basic, and Python in high school). Our
interviews revealed that the remaining participants got

3 https://uwaterloo.ca/management-sciences/future-undergraduate-
students/why-management-engineering

exposure to programming by studying online tutorials over
summer or winter breaks.

Throughout the study, we found that the students’ disciplinary
training and the co-op program both heavily influenced their
perceptions, self-efficacy, and value judgments related to
learning Processing, Java, and programming in general.

V. PERCEPTIONS OF PROGRAMMERS
AND PROGRAMMING

One goal of our study was to understand the perceptions that
students had about programmers and programming prior to
taking this first-year class. We saw two themes in the
responses: avoiding programming out of fear of the perceived
learning challenges and simply not being aware of what
programing actually entailed.

For example, one of our interviewees who chose not to take a
programming course in high school explained his rationale:

I wanted to take [programming] in grade 11 [and]
grade 12 but I feared that I wasn't capable to think like
a computer and I heard that the assignments that they
gave were challenging and people kind of just struggled
with it…I didn't want to struggle…(P11)

Another theme we observed in the responses was
misconceptions and generalizations about what programmers
actually do at work:

When you think of programming you think of someone
like sitting in a dark room typing on a keyboard all the
time…(P06)

Many students explained that social media and how
programmers are portrayed in popular culture contributed to
their perceptions of programming:

I just thought programming was mainly used in the
hacking field, for example…because you know watching
movies and stuff, right, you see oh they're shutting down
street lights and stuff…(P13)

However, within the first few weeks of the course, students
started discovering that programming involved a lot of

Figure 1: Classification of survey responses into the top 6
categories of “ideal jobs” listed by our survey respondents

problem solving and there was more to it than just "typing in a
dark room:”

You don't have to be amazingly smart to do it but like
you do have to have the skill of breaking down problems
which is something I've learned now but before I
thought it was only a subject that a certain few could be
good at…(P25)

Students felt that understanding what programming is and how
it actually works helped them debunk some of their earlier
misconceptions about the utility of programming:

…basically everything runs on programming, you've
[got] your account, files, everything stored, even
learning…basically the world is connected on
computers now, and programming runs all our social
lives, academic lives and professional lives. It runs
everything. What would we do without programming?
(P12)

Even though our participants were accustomed to having a
heavy engineering workload and challenging math and science
courses, they found programming to be a lot different from
their other courses:

It’s a different type of problem solving I guess. Like in
engineering a lot of times you might be battling with
restraints and not having enough resources but this is
kind of like analytical thinking about how you can
approach stuff differently…(P04)

Some students mentioned that after taking the course they
realized that they would benefit from programming in their
everyday life. They realized that programming was a skill they
could carry with them everywhere:

Just the problem solving techniques that you learn I
think are stuff that you apply even in like day-to-day
problem solving even if you don't realize it…like you're
not writing code when you have an issue on a day-to-
day basis but the problem solving techniques and the
steps that you go through still apply in real life… (P19)

A. Why Learn Programming If You’re Not Planning on
Becoming a Programmer?

One salient finding from our surveys was that despite the
perceptions that students initially had and some of the
frustrations that they described in learning programming for
the first time, over 73% of the respondents wanted to take
another programming course after this intro course. When we
asked respondents to list the kinds of things they can imagine
using programming for in the future (either for work or
hobby), 48% of respondents listed future work-related tasks
involving end-user programming, such as data analysis,
process automation, solving calculations, and making mobile
apps, among others. (Interestingly, none of the responses
indicated anything related to pursuing a hobby.)

In our interviews, we probed into understanding why students
valued programming and wanted to take more programming
courses (if it was not for the reason of pursuing end-user
programming). The most common reason was that early on in

the program, students had formed a perception that
programming was an “important skill to have on your
resume”, and “a necessary evil” (based on what they had
heard about the co-op program from other students).

…it became apparent that you had to know some type of
programming language...it was like a staple of your
intelligence knowing that if you knew how to program
…like you need something to attract an employer and it
seemed like everybody was mentioning programming so
that was something that you kind of had to look into
even if you didn't really want to…I'm enjoying it
[programming] even though like again it's tedious but
the reason I first looked into it was because it seemed
like you needed it to, to even apply to any [co-op] job
basically…(P25)

Increasing the potential for securing job opportunities was one
of the most common responses among the participants:

I guess it [programming] just like broadens [the] range
of skills that you have…so, say I know a lot about
management science but I also know programming
which can help me in say like, if I'm looking for a job I'll
have like experience in Java as well as all my other
experiences. It's just like to add on to like the list of
skills…(P16)

This sentiment was echoed by a number of participants:

I’d just learn some other programming language
because it looks good on the resume like I don’t really
enjoy programming...I think more of a qualification part
would be for me to learn programming
languages…(P22)

We also found that those students who did not want to take
another formal course were still willing to learn on their own,
at their own pace:

I would like to learn more programming…it's useful
looking for co-op jobs for sure. But it's just the timing
and it takes up a lot of time. I think it's, there's so many
resources on like the Internet to learn but I guess there's
just no time for it. If I was on a co-op term I think I
would have more time to actually learn so I think I
might pick up some things like that...(P05)

On the flip side, we also probed into why over a quarter of the
students did not want to take another programming course. In
this case, the common response was, “it’s not for me:”

It [programming] requires a lot of patience and it
requires a person to dig in to figure out what's going on.
I'm not that type of person. I do math easily, but digging
in and trying to invent something, that's what I want to
do but I'm not that person by myself...(P17)

In summary, many students learned that programming was
more about problem solving (and not just cryptic typing) and
could see the application of programming skills beyond the
classroom. Interestingly, even though more than half of the
students did not want to be professional programmers or even

end-user programmers, they valued programming literacy for
being able to market themselves for future jobs.

VI. PERCEPTIONS OF SELF-EFFICACY AND
COMPTENCE WHEN PROGRAMMING

As mentioned earlier, a number of the participants did not
know what programming was or were afraid to try it in high
school. However, once they started taking a programming
course, their self-confidence started to improve. Our surveys
showed that after being introduced to Processing, over 70%
of students felt confident about writing short programs, and
after learning Java, over 50% of students felt confident about
writing short programs in Java (Figure 2). Being able to work
on actual programming problems and seeing results
demystified the assumptions that students had made about
programming and their self-efficacy:

I always wondered how computers worked and I always
thought it was so beyond my level of knowledge that I
would never be able to learn that…so, the fact that I
actually am learning that, it's really interesting…(P07)

Many of the students wanted to keep learning programming to
be more self-confident when working in the software industry
in business or management positions:

If we do anything [in] management we don't want to be
standing there talking to someone not having a clue
what they're talking about. We should at least…I think, I
don't know, I couldn't do your [software engineering]
job but when you're talking to me I know what you're
saying and I don't feel totally like an idiot…(P14)

Our participants not only appreciated the value of being able
to communicate with programmers, but also in being able to
better understand and appreciate programmers’ efforts:

I have much more respect for people who do
programming for a living, I certainly couldn’t. Maybe if
it was my job I would be able to because I could put in
the hours for it, but right now it’s really humbling when
you think of how some people can create incredible
pieces of work and I’m struggling to do assignment
questions or what not. I really just gained a huge
amount of respect for people who can do it and can do it
well…(P24)

Despite the enthusiasm for having programming as a
marketable skill on resumes and confidence in writing short
programs in Java and Processing, we discovered in our
interviews that most students were not confident about
actually pursuing programming jobs:

I don't think I'd be able to keep up with it
[programming] very well, just I'm not the best
programmer… they'd probably want me to do things
that programming position wants me to do but it'd be a
struggle, it'd be a huge struggle. I'd have to put in lots
of extra hours to make sure I do the job...(P24)

One of the main reasons for this lack of self-confidence was
that the students worried about where they stood amongst their

peers in CS and software engineering programs, who also
compete for the same programming jobs:

I think we're definitely capable of doing programming
jobs but software engineering [major] is quite a bit
ahead of us so I'd rather have someone else like that do
it [programming]. I don't know if I'd feel entirely
comfortable doing it…(P4)

Even though the students were taught an introductory
curriculum based on mainstream intro courses in Java, the
students consistently demonstrated low self-efficacy because
they assumed that other students would know more or have
more experience:

Unless I devote an exceptional amount of my time,
boring, ridiculous amount of my time above and beyond
my own program I will never have the same level of
experience or competence with the computer
engineering and software students…(P15)

In summary, even though students were enthusiastic about
learning programming beyond this course and having
programming experience on their resume, they were not as
confident in actually taking up a programming job.

VII. REACTIONS TO PROGRAMMING IN
PROCESSING AND JAVA

In trying to better understand students’ assessments of their
self-efficacy and competence, we probed into students’
reactions to programming for the first time and how they
viewed the transition from Processing to Java in the course.

In relation to both programming languages, students described
a number of issues related to syntax, logic, debugging and
“thinking like a computer”, consistent with previous studies
[20] on novice learners. During the weekly observations, we
observed that the majority of students would start typing code
before thinking of a solution to the problem. Particularly when
students started working on Java after learning Processing,
many of them initially struggled with problem decomposition,
and often relied on trial and error. Our interviews also
confirmed these findings:

Your critical thinking has to be really strong so I feel like
that's the hard part about Java…you have to know how to
start the problem, you have to know the scenarios and the

Figure 2: Comparison of survey responses to the question, “I am

confident about writing short programs on my own”
 Processing (left) vs. Java (right)

cases you're going to pick to actually make the program
work instead of just typing it out…(P13)

Students who were coding in Java for the first time were most
frustrated by the Eclipse IDE and not being able to understand
why their program would sometimes compile and fail at other
times:

Computers are a lot pickier with their language than I
thought…they don't think like a person reading it would
think, they think very literal. It's kind of like talking to
someone who's mocking you by responding completely
literally to what you mean…(P14)

Despite some of the frustrations, students also shared stories
of resilience and improvement throughout the term:

You don't have to be a genius but you do have to
persevere a lot, especially when you're trying to find
that one semi-colon that's making your program not
compile... yeah perseverance and not breaking your
computer…(P25)

When we asked students to compare their reactions to learning
Processing vs. Java in the course, our surveys indicated that
80% of students felt that it was useful to learn Processing
before Java. The interview responses were consistent with this
result:

I thought it was good that we started out with
Processing because for someone who has had no
programming experience it was kind of like we're easing
you into it, we're not like throwing you in the deep end
right from the get go. (P25)

From a learning perspective, participants consistently
appreciated the graphical aspect of Processing and its simple
IDE compared to the initial programs they wrote in Java:

It's nice to be able to see an output [in Processing], to
program something and immediately see exactly what it
did and…but, in Java [so far] we have only done things
that output a word into the bottom of the
console…whereas with Processing it would be a
separate thing, you could output something to the
console or you could create your own thing…(P01)

Interestingly, even though students found Java more
challenging to learn than Processing, their common perception
was that Java was more useful:

I think Java's more practical. Ah Processing might be
more fun like you can make shapes and draw pictures
and stuff like that but I don't think it's really
useful…(P4)

I think Processing is used for more just graphic designs
like animations and that kind of stuff…I think Java will
be more complex and so we'll learn more, I think Java's
a lot more useful…(P5)

There was also a perception (or perhaps misconception) that
Processing was not useful for anything in the real world:

I think, to me it feels like Processing is a very old kind
of programming language…if you think that in 70s
when there were still those big computers and all they
could do was like output words, I think that's my
connection between Processing and those computers,
doesn't really do much…(P11)

Although students did not provide any clear reasons why they
thought Processing was not useful, most of their perceptions
seemed to have been influenced by not only the nature of the
course assignments, but also the number of job postings
related to Java:

I feel like Java would be more applicable but I feel
Processing for me was more [enjoyable], because of the
more visual artistic part…that’s something I’d enjoy
more working with…I'd prefer Java because like we
haven’t done a lot of Processing and really…like how
much farther can you take it? And companies recognize
Java a lot more than Processing…(P21)

In summary, many of the struggles and frustrations that
students described with initial exposure to Processing vs. Java
were not surprising, given the similarity to findings of
previous studies on novice programmers [20]. However, the
surprising finding was the kinds of perceptions that these first-
year students formed about the utility and usefulness of
languages based on their marketability, rather than
learnability.

VIII. DISCUSSION
We have presented a detailed case study of first-year
programming in a management engineering program where
students receive interdisciplinary training in engineering,
science, and management, and are required to complete
mandatory co-op internships. Our study adds to existing studies
of non-CS majors, highlighting students’ unique motivations,
career goals, perceptions of programmers and programming,
and reactions to different languages. Although our study is
limited to one population, we discuss the importance of some of
the initial evidence and potential implications for pedagogy and
computing education research.

A. Rise of the “Conversational Programmer”
Our results indicate that while many of the management
engineers were interested in being end-user programmers
(similar to [3,17,24]), some of the students wanted to develop
only “conversational” skills in programming so that they can
communicate with programmers in the future and improve
their perceived marketability in the software industry (e.g.,
similar to being conversationally proficient in a foreign
language). This finding suggests that among the traditional
classification of non-programmers vs. end-user programmers
versus professional programmers, there exists a category of
students who want to be literate in programming to converse
in the “programmer’s language.” We characterize a person who
is more programming literate than a non-programmer, but not
necessarily an end-user programmer, as a conversational
programmer (Figure 3).

Given the rise of interdisciplinary undergraduate programs
similar to management engineering (e.g., that bridge business,
data manipulation, computational science, and engineering
skills), it would not be surprising to see conversational
programmers emerge in other non-CS disciplines as well.

B. Pedagogical Dilemmas for Conversational Programmers
So, should we be teaching conversational programmers
differently? We found that conversational programmers were
well aware of the utility of mainstream programming
languages (such as Java) and perceived them to be more useful
than teaching-oriented languages (such as Processing), partly
due to the mandatory co-op program. This creates an
interesting tension in this type of a non-CS intro programming
classroom: how much emphasis should we give to visual
languages to achieve better learning outcomes vs. teaching
mainstream languages for the sake of marketability? Similarly,
should we keep exploring special IDEs and tools to support
the learning needs of novices and non-CS majors (e.g., with
[4]), or should we expose them to realistic professional IDEs
for better exposure to industry-level software development?

Also, when we have a classroom where non-CS majors place
different value judgments associated with learning
programming, how applicable are domain-specific or
specialized courses [6,12]?

For over a decade, we have known that the population of end-
user programmers far exceeds professional programmers [24].
Consistent with prior findings, we also found that half of the
students in our study wanted to work on end-user
programming tasks, such as data analysis and project
management (using spreadsheets). However, we cannot
assume that all non-CS majors learn programming for the sake
of becoming end-user programmers. Is it still worth it to instill
strong end-user programming skills, even if conversational
programmers may never actually write any code? We believe
there is a rich space to further explore such questions about
the pedagogy of conversational programmers.

C. Limitations and Future Work
Despite some of the new research questions that our study
opens up, it has several limitations.

First, our findings represent the perspective of only one
particular undergraduate major—it may be that these findings
are limited in other contexts. It will be valuable to have other

such case studies in different disciplines to overall better
understand the perspectives of non-CS majors in intro
programming courses.

Also, since the students in our study were in their first year of
the program, it is likely that their perspectives will change
over time. We have not provided an explicit comparison to
these perspectives in this paper because we wanted to first
understand the initial perspectives of students that are formed
upon their first exposure to code (and even before starting the
intro programming course). Doing a comparison between first-
year students and those who are, for example, closer to
graduation would be an interesting direction for future work.

Finally, our findings may be limited to our institution and its
unique interdisciplinary nature and the co-op program. Does
the conversational programmer concept manifest in other
contexts outside the university and other disciplines? What is
the industry perspective on conversational programmers? We
believe that these questions need to be addressed in future
work and that there is merit in further exploring and
developing the concept of conversational programmers.

IX. CONCLUSION
For over two decades, we have seen several initiatives that
introduce new ways of teaching programming and
computational thinking skills to students in disciplines outside
CS, but our knowledge of the non-CS population and their
perceptions of programming is limited. In this paper, we have
presented an in-depth study of one non-CS population of
management engineering students enrolled in a required
introductory programming course. Our study is among the
first to shed light on the perceptions, motivations, and
reactions to first-year programming from the perspective of
these interdisciplinary non-CS students. Our findings suggest
that successful domain-specific efforts that abstract out
complex concepts and focus on what end-user programmers
need (e.g., those in science vs. art vs. interdisciplinary
programs, etc.) should be developed further since many non-
CS students are likely to benefit from them. However, at the
same time, we have to be open to other types of programming
needs and value judgments among non-CS majors. The sub-
population of conversational programmers that we discovered
among management engineering students may just be the
beginning—perhaps, there are other categories as well along
the spectrum of non-programmer to professional programmer
that need to be explored further.

ACKNOWLEDGMENTS

This work was funded in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERNCES

[1] Burnett, M.M. 1999. Visual programming. In Wiley
Encyclopedia of Electrical and Electronics
Engineering. (John G. Webster, ed.) New York, NY:
John Wiley & Sons.

Figure 3: Our results point to the presence of conversational
programmers, who are interested in becoming programming

literate, but not necessarily end-user programmers

[2] Burnett, M.M., Baker, M.J., Bohus, C., Carlson, P.,
Yang, S. and Van Zee, P. 1995. Scaling up visual
programming languages. Computer, 28, 3, 45–54.

[3] Burnett, M.M. and Myers, B.A. 2014. Future of end-
user software engineering: beyond the silos.
Proceedings of the on Future of Software Engineering,
201–211.

[4] Carlisle, M.C., Wilson, T.A., Humphries, J.W. and
Hadfield, S.M. 2004. Raptor: introducing programming
to non-majors with flowcharts. Journal of Computing
Sciences in Colleges, 19, 4, 52–60.

[5] Close, R., Kopec, D. and Aman, J. 2000. CS1:
perspectives on programming languages and the
breadth-first approach. Journal of Computing Sciences
in Colleges, 228–234.

[6] Cooper, S. and Cunningham, S. 2010. Teaching
computer science in context. ACM Inroads, 1, 1, 5–8.

[7] Dorn, B. and Guzdial, M. 2010. Learning on the job:
characterizing the programming knowledge and
learning strategies of web designers. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, 703–712.

[8] Duimering, R., Elhedhli, S., Jewkes, B. and Smucker, M.
2013. Management Engineering: The Engineering of
Management Systems. Available at: https://uwaterloo.
ca/management-sciences/sites/ca.management-sciences/files/u
ploads/files/Management_Engineering_discussion_paper.pdf

[9] Forte, A. and Guzdial, M. 2005. Motivation and
nonmajors in computer science: identifying discrete
audiences for introductory courses. IEEE Education, 48,
2, 248–253.

[10] Goldman, K.J. 2004. A concepts-first introduction to
computer science. ACM SIGCSE Bulletin, 432–436.

[11] Guzdial, M. 2003. A media computation course for non-
majors. ACM SIGCSE Bulletin, 104–108.

[12] Guzdial, M. 2010. Does contextualized computing
education help? ACM Inroads. 1, 4, 4–6.

[13] Guzdial, M. and Forte, A. 2005. Design process for a
non-majors computing course. ACM SIGCSE Bulletin,
361–365.

[14] Guzdial, M. 2015. Computing Education Must Go
Beyond Intuition: The Need for Evidence-Based
Practice. BLOG@CACM (February 22, 2015).

 [15] Hadjerrouit, S. 1998. Java As First Programming
Language: A Critical Evaluation. ACM SIGCSE
Bulletin, 43–47.

 [16] Kelleher, C., Pausch, R. and Kiesler, S. 2007.
Storytelling Alice Motivates Middle School Girls to
Learn Computer Programming. Proceedings of the

SIGCHI Conference on Human Factors in Computing
Systems, 1455–1464.

 [17] Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.,
Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J.,
Lieberman, H. and Myers, B. 2011. The state of the art
in end-user software engineering. ACM Computing
Surveys (CSUR). 43, 3, 21.

[18] Marks, J., Freeman, W. and Leitner, H. 2001. Teaching
applied computing without programming: a case-based
introductory course for general education. ACM
SIGCSE Bulletin, 80–84.

[19] Meysenburg, M.M. Introduction to Programming Using
Processing. 2014. Crete, NE: Mark M. Meysenburg.

[20] Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams,
E., Bennedsen, J., Devlin, M. and Paterson, J. 2007. A
survey of literature on the teaching of introductory
programming. ACM SIGCSE Bulletin, 204–223.

[21] De Raadt, M., Watson, R. and Toleman, M. 2004.
Introductory programming: what’s happening today and
will there be any students to teach tomorrow?
Proceedings of the Sixth Australasian Conference on
Computing Education-Volume 30, 277–282.

[22] Resnick, M., Maloney, J., Monroy-Hernández, A.,
Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J. and Silverman, B. 2009.
Scratch: programming for all. Communications of the
ACM. 52, 11, 60–67.

[23] Ryan, S. 2012. Colleges with Data Science Degrees.
Available at: http://101.datascience.community/2012/04/
09/colleges -with-data-science-degrees

[24] Scaffidi, C., Shaw, M. and Myers, B. 2005. Estimating
the numbers of end users and end user programmers.
IEEE Visual Languages and Human-Centric
Computing, 207–214.

[25] Stephenson, C. and West, T. 1998. Language choice and
key concepts in introductory computer science courses.
Journal of Research on Computing in Education, 31, 1,
89–95.

[26] Urban-Lurain, M. and Weinshank, D.J. 2000. Is there a
role for programming in non-major computer science
courses? Frontiers in Education Conference, 1, T2B/7–
T2B11.

[27] Wilson, G. 2006. Software carpentry. Computing in
Science & Engineering, 8, 66-69.

[28] Wolber, D. 2011. App inventor and real-world
motivation. Proceedings of ACM technical symposium
on Computer science education, 601–606.

