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ABSTRACT
Despite decades of research attempting to establish conversa-
tional interaction between humans and computers, the capa-
bilities of automated conversational systems are still limited.
In this paper, we introduce Chorus, a crowd-powered conver-
sational assistant. When using Chorus, end users converse
continuously with what appears to be a single conversational
partner. Behind the scenes, Chorus leverages multiple crowd
workers to propose and vote on responses. A shared memory
space helps the dynamic crowd workforce maintain consis-
tency, and a game-theoretic incentive mechanism helps to bal-
ance their efforts between proposing and voting. Studies with
12 end users and 100 crowd workers demonstrate that Cho-
rus can provide accurate, topical responses, answering nearly
93% of user queries appropriately, and staying on-topic in
over 95% of responses. We also observed that Chorus has ad-
vantages over pairing an end user with a single crowd worker
and end users completing their own tasks in terms of speed,
quality, and breadth of assistance. Chorus demonstrates a
new future in which conversational assistants are made us-
able in the real world by combining human and machine in-
telligence, and may enable a useful new way of interacting
with the crowds powering other systems.
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INTRODUCTION
Using natural language dialogue to interact with automated
software has been a goal of both artificial intelligence and
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human-computer interaction since the early days of comput-
ing. However, the complexity of human language has made
robust two-way conversation with software agents a consis-
tent challenge [1]. Existing dialogue-based software systems
generally rely on a fixed input vocabulary or restricted phras-
ings, have a limited memory of past interactions, and use a
fixed output vocabulary. In contrast, real-world conversations
between human partners can contain context-dependent terms
or phrasing, require memory stretching back over the conver-
sation and past history of interactions and shared experiences,
require common sense knowledge about the world or events,
or facts, and contain meaningful incomplete and partial state-
ments. Conversational assistants like Siri were greeted with
great excitement when first released, but still possess limited
capabilities beyond a finite set of pre-defined set of tasks be-
cause they cannot truly understand the user [8, 9].

While individual humans have no difficulty in maintaining
natural-language conversation, it is often infeasible, unscal-
able, or expensive to hire a human to act as a conversational
partner for long periods of time or to support large numbers
of conversational partners. In recent years, crowd computing
has become a popular method to scalably solve problems that
are beyond the capabilities of autonomous software by sub-
contracting the difficult aspects that only humans can solve
to groups of paid humans over the web. In this model, the
crowd refers to a transient pool of online, semi-anonymous
workers recruited for short periods of time from online mi-
crotask marketplaces such as Amazon’s Mechanical Turk1 or
MobileWorks2. Crowd computing can provide software with
human intelligence often while maintaining the scalability of
autonomous software, but presents new challenges in reliabil-
ity, incentivization, and accuracy [14].

In this paper we present Chorus, a crowd-powered conver-
sational assistant that allows a user to receive assistance on
any online task through a two-way natural language conver-
sation. Chorus is capable of performing any task that may be
accomplished over the web using information that the user is
comfortable sharing. Although it appears to the user that the
assistant is a single individual, the actions and responses of

1www.mturk.com
2www.mobileworks.com



Figure 1. The Chorus interface for crowd workers encourages each
worker to both propose responses and vote on the responses of others.
Crowd workers can also make use of a collective shared chat history
(working memory) that allows them to maintain continuity throughout
the conversation, even as some leave and new workers join. The memory
view is curated by a separate set of crowd workers. The “user” view is
similar but removes the “Working Memory” section and only displays
proposed messages once they have sufficient votes.

the assistant are actually the combined effort of a number of
crowd workers that may come and go over the course of a sin-
gle conversation. This approach enables real-time interaction,
personalized answers, and takes the first steps towards robust
conversational interaction for control over other systems, in
addition to question answering.

As part of the crowd worker interface to Chorus, crowd work-
ers generate, agree upon, and submit responses to end users
(Figure 1). Key to Chorus are three components that support
realistic conversations from multiple crowd workers. First,
a collaborative reasoning system lets workers select rea-
sonable responses from a number of crowd-produced sugges-
tions, which allows the best responses to be forwarded on to
the end user and removing potential responses that do not fit
the flow of the conversation. It also allows the crowd to de-
cide when a response is “good enough” and not to wait for
another potentially better response. Second, a dynamic scor-
ing system rewards workers for interactions that support the
goal of consistent conversation, such as making useful state-
ments or highlighting facts that are used later. Finally, a cu-
rated memory system lets workers promote salient portions
of a conversation to a shared memory space, which provides
a rapidly-accessible list of facts and statements that are sorted
by importance (again judged by the crowd) that ensures new
crowd workers are up-to-date with details of current or past
conversations that may be relevant for providing future re-
sponses. These features enable the crowd to learn and re-
member information collectively, and allows crowd workers
to be rewarded for their performance.

Our experiments with 12 users and 100 crowd workers demon-
strate that Chorus can provide highly accurate and on-topic
responses, answering over 92.85% of queries appropriately,
and staying on-topic in nearly 96% of accepted responses,

significantly better than unfiltered crowd responses. Using
multiple workers also allows the average task time to fall from
103.4 seconds with just a single worker to 44.6 seconds be-
cause multiple workers have a better chance of finding the
correct solution more quickly because they are able to search
in parallel. Beyond user performance, we gain insight into
user’s usage and preferences regarding real-time personal as-
sistants. More generally, Chorus demonstrates how crowd-
powered communication may serve as a robust alternative for
interacting with software systems.

The primary contributions of this paper are:
• Chorus, a crowd-powered conversational assistant able to

assist end users consistently with general knowledge tasks;
• A game theoretic incentivization mechanism that encour-

ages crowd workers to participate as part of a consistent
conversational assistant;
• An evaluation with 12 end users and 100 crowd workers

that both shows the advantage of our approach and of-
fers several interesting qualitative observations about how
crowd members work together to answer questions; and
• The description of a path forward from crowd-powered con-

versational assistants that will gradually introduce more
machine intelligence into the process in order to lower costs
and improve scalability.

RELATED WORK
Chorus builds on prior work in both real-time and offline hu-
man computation. Human computation [25] has been shown
to be useful in many areas, including writing and editing [5],
image description and interpretation [7, 26], and protein fold-
ing [11]. Chorus aims to enable a conversation with a crowd
of workers in order to leverage human computation in a vari-
ety of new ways. Existing abstractions obtain quality work by
introducing redundancy and layering into tasks so that mul-
tiple workers contribute and verify results at each stage [22,
13]. For instance, the ESP Game uses answer agreement [26]
and Soylent uses the multiple-step find-fix-verify pattern [5].
Since these approaches take time, they are not always suitable
for interactive real-time applications.

Many crowd computing applications have used the crowd to
interpret natural language instructions provided by the user
in applications such as image description [7], speech recog-
nition [16], activity recognition [18], interface control [17],
document editing [5], and even vacation planning [29, 15].
However, such systems require only a single round of com-
munication, from the requester to the worker and back. The
reason for this is that maintaining consistent communication
with the crowd is inherently difficult because the pool of on-
line agents is always changing and no individual worker can
be relied upon to be available at a given time to respond to a
query or to continue a dialogue for more than a few moments.
Individual workers may fail to respond to queries quickly or
intelligibly for various reasons including misunderstanding of
task directives, laziness, distractions, or outright malicious-
ness. Furthermore, individual workers may experience de-
lays that are beyond their control, such as network bandwidth
variability, that make conversation inefficient. As a result, the
crowd has historically been used only as a tool to interpret



human instructions, rather than the foundation of a dialogue-
based system itself.

Crowdsourcing Web Search and Question Answering
Prior work has looked at providing specific answers to a wide
range of uncommon questions searched for on the web by
having workers extract answers from automatically generated
candidate webpages [6]. CrowdSearcher [2] introduced a model
in which social search was combined with automated search
by way of a structured query model.

Most Internet forums rely on groups of workers to answer
queries. Contributors are expected to read through the thread
history and gain context before submitting responses. Those
submitting the original question can also respond to the an-
swers provided, and give feedback concerning issues that the
group has with the query. This is similar to what Chorus aims
to elicit from web workers. The difference is that forums and
similar systems typically generate answers offline, often tak-
ing hours or even days to arrive at a final answer. In order
for Chorus to enable conversational interfaces, it needs to be
able to provide real-time interactive responses. Other systems
such as ChaCha3 try to get answers back to users in nearly-
realtime, but provide answers from individual workers with-
out considering the history of the user. Another difference
from typical forums is that participants in Chorus collectively
participate in dialogue as though they were a single individ-
ual, instead of responding independently.

Real-Time Human Computation
Researchers have only recently begun to investigate real-time
human computation. VizWiz [7] was one of the first sys-
tems to elicit nearly-realtime response from the crowd. It in-
troduced a queuing model to help ensure that workers were
available both quickly and on-demand. For Chorus to be
available on-demand requires multiple users to be available
at the same time in order to collectively contribute. Prior
systems have shown that multiple workers can be recruited
for collaboration by having workers wait until a sufficient
number of workers have arrived [26, 10]. Adrenaline com-
bines the concepts of queuing and waiting to recruit crowds
(groups) in less than 2 seconds from existing sources of crowd
workers [3]. Further work has used queuing theory to show
that this latency can be reduced to under a second and has
also established reliability bounds on using the crowd in this
manner [4]. Work on real-time captioning by non-experts[16]
uses the input of multiple workers, but differs because it en-
gages workers for longer continuous tasks. These systems
introduce a variety of methods for rapidly recruiting crowds
for a task that we use in Chorus, but focus only on one-way
interaction with the crowd rather than extended engagement.

Legion enables real-time control of existing user interfaces
by allowing the crowd to collectively act as a single oper-
ator [17]. Each crowd worker submits input independently
of other workers, then the system uses an input mediator to
combine the input into a single control stream. Our work

3www.chacha.com/

allows systems such as Legion to be more easily and natu-
rally controlled by users by adding a conversational layer on
top. Importantly, Chorus does not need to change the under-
lying system itself, making development of crowd systems
with natural language interfaces more modular.

Organizational Learning
The idea of crowd memory and learning in continuous real-
time and collective answer tasks is related to the organiza-
tional learning theory (summarized in [21]). Organizational
learning has previously been demonstrated in continuous real-
time crowdsourcing using Legion [20]. There learning was
shown in implicit cases where new workers learned from ex-
perienced workers by observing the collective actions of the
group. This means that activities in which information is ide-
ally only provided once, such as conversation, cannot be ac-
counted for using their model. Here, we instead aim to make
the crowd’s memory more explicit by having workers curate
a knowledge base to be used by future workers in much the
same way historians do on a societal scale by aggregating
documents and other accounts of past events.

Measuring Human-Crowd Conversation
Several approaches have been proposed for measuring the ef-
fectiveness of conversational agents. One approach is to use
reference answers, then compare agent-provided responses to
these [12]. This approach falls short when rating dialogues
that may not follow the fixed expected path, even when the
response itself is valid. PARADISE [27] attempts to create
a structured framework for evaluating spoken dialogue that
is separate of the specific task being performed. However,
because PARADISE tries to minimize completion time, it is
generally biased in favor of shorter conversations, not just
ones that accomplish a task more effectively. Another ap-
proach is to elicit subjective feedback from users of the sys-
tem itself to get a more comprehensive notion of whether or
not the system is helpful. Webb et al [28] explore measur-
ing conversations for appropriateness, rather than via a fixed
‘performance’ metric.

In this paper, we evaluate the crowd’s ability to hold a con-
versation using a combination of measuring appropriateness
and obtaining user evaluations of the interaction. Since our
metric must account for variations in Chorus that are not seen
in automated systems, such as varying time to find the same
answers, this gives us a more complete metric of the conversa-
tion without being biased towards speed alone. It also allows
conversations to take one of many appropriate paths, which
is important given the multitude of workers and opinions that
Chorus will incorporate.

CHORUS
This section presents the Chorus system, first at a high-level
through a scenario, and then through a discussion of the key
challenges that Chorus faces and how they were addressed to
create a functional system. A diagram of the Chorus system
can be seen in Figure 2.



Scenario
To demonstrate the utility of crowd-powered conversational
interfaces, we consider the following scenario. Susan is a
mother of 3 who uses Chorus as an autonomous personal as-
sistant while driving from work and picking up her daughter.
When Susan is driving, she is situationally disabled [23], as
she is unable to use her hands or divert her focus from the
road. We will see how Chorus can listen to Susan’s requests
and interact with an interface on her behalf, much like a per-
sonal assistant.

When Susan first opens Chorus at the start of a drive, the sys-
tem begins recruiting crowd workers from the web. Within a
few seconds, the system is ready to begin responding. Since
Susan is driving, she opts to use the voice input mode. She is
on her way from a meeting to a store in downtown Chicago,
IL to purchase a present for a birthday party, then needs to
quickly head over to pick up her daughter and take her there.
Since Susan does not know what kind of present is appropri-
ate and is in a hurry, she asks Chorus to recommend a present
for a 5-year-old boy that she can buy on the way home.

Individual workers in the crowd can listen to Susan’s request,
interpret the instruction and then develop their own response.
These responses must then be merged into getting a single,
unified response, which is a key challenge for Chorus that we
call achieving agreement. Our method for achieving agree-
ment involves a combination of crowd voting and similarity
matching between existing answers, which we will discuss
later. When a proposed response has sufficient agreement it
is “locked in,” presenting it to the user (Susan) via speech or
text. Using workers for both response generation and selec-
tion has several advantages. First, involving multiple workers
leads to an appropriate response more quickly and with more
options explored than a single worker could do alone because
each worker works in parallel with the others and typically on
a different path because of the intrinsic differences between
workers. Second, using workers to help achieve agreement
improves accuracy since people are generally able to identify
correct answers better than they can generate them [24].

Once Susan has asked for suggestions, one worker quickly
returns “a Furby,” but others have looked up Amazon reviews
online and know that this product is not recommended for 5-
year-olds. Workers propose a variety of alternatives at first,
including some that cost over fifty dollars. The responses
with high-priced items do not receive as many votes however,
because most workers have noticed that in a previous con-
versation Susan had said she typically spends around twenty
dollars on a gift. This is revealed in the “Working Memory”
section of the crowd workers’ interface. Ensuring that mem-
ory of previous interactions is integrated into crowd workers’
decisions is another key challenge addressed by Chorus.

Some workers propose purchasing a specific action figure for
twenty dollars, and find a nearby toy store that lists it in stock
via its website. Finally, while verifying the route to the toy
store, one worker sees a traffic report saying there is a ma-
jor accident on Archer St that will not be cleared for at least
an hour, so they propose an alternative store close to Susan’s
work: “take I-90 to the toy store on 444 W. Chicago Ave to

Dialogue Significance
Scoring

Crowd

End User
MemoryChat

Figure 2. The Chorus system. Users first make a request, which is for-
warded to the crowd. Workers can both submit responses and vote for
those proposed by others. Responses are hidden from users until suf-
ficient agreement between workers is achieved. Workers can also add
information to the crowd’s working memory by either voting on existing
lines from the conversation, or adding summaries of key facts.

avoid traffic on I-55 and an accident on Archer St You can
buy an action figure there for twenty dollars.” Other workers
quickly check this option and see it is the best one. Within
moments they switch their vote, and the action figure option
is forwarded to Susan and spoken out loud by the applica-
tion. The agreement and memory features of Chorus have en-
sured that crowd workers were able to generate a high quality
response while taking into account information available to
them from current and past conversations.

Challenge: Recruiting and Training Workers
To recruit workers in near real-time, we use a retainer pool [3]
and a thresholding mechanism to ensure that a certain number
of workers arrive to each conversation task simultaneously
and when needed, similar to the method used in legion [17].
The number of workers required is configurable, and we ex-
plore this in our studies, described later.

To ensure that the workers were educated in the use of the
interface and to test their competence for the task, we showed
workers a 30 second video describing how to use the interface
the first time they joined a task. After showing the video, we
then sent workers through two guided tutorials before they
could participate in the main task. The first tutorial required
workers to correctly propose a response given a message and
the second required the user to vote on a set of potential re-
sponses given a message. Both of these tutorials provided
guidance on how to use the interface, and the correct answer
for each tutorial task was extremely simple to deduce. Feed-
back was provided for incorrect answers and workers had as
many opportunities as they wanted to try again if they failed.
While these tutorial tasks were very simple, they had the ef-
fect of filtering out many lazy, idle, malicious, and confused
workers, as well as any bots. Filtering the idle workers was
particularly important, because in early trials many workers
would join the retainer queue but then become idle while
waiting for the task to begin.

Informally, we found that those that passed these tutorials
were generally more engaged in the task and less likely to
become idle. We also found that a majority of the workers
who visited the tutorial pages did successfully enter the task.



Challenge: Achieving Agreement
There are at least two possible methods that Chorus could
use to identify when agreement has been achieved among the
crowd workers: an explicit voting method where crowd work-
ers vote on others’ responses, or an automatic method that at-
tempts to identify agreement automatically by comparing the
similarity of multiple suggested responses. In the current ver-
sion of Chorus, we focus on only the explicit voting method.

The crowd worker interface for Chorus (Figure 1) shows all of
the suggested responses and allows workers to vote on those
responses. Workers may change their votes at any time, in-
cluding retracting their votes. Chorus requires a majority of
workers to agree on a response in order to lock it in, and the
majority is calculated based only on the currently connected
workers and their votes. If a worker disconnects from the
system then their votes are removed, which prevents workers
from trying to game the system by voting for a lower qual-
ity post and then disconnecting to lower the number of votes
required to achieve a majority.

While the use of a voting method seems straight-forward, it is
important to design a reward scheme that motivates workers
to think carefully about their responses and their votes. A
naive award scheme might reward workers for each response
and vote that they put into the system, but this approach will
simply yield a large number of low quality responses instead
the higher quality responses that we wish to encourage.

To encourage workers to submit only accurate responses, Cho-
rus uses a multi-tiered reward scheme that pays workers a
small amount for each interaction with the interface, a medium
reward for agreeing with an answer that subsequently gets
enough votes from others to forward to the user, and a large
reward for proposing an answer that the crowd eventually
chooses. The difference between these reward values for each
of these cases can be used to adjust workers’ willingness to
select one option over another. Our experiments used 20,
1000, and 3000 points for each value respectively, where 1000
points correlates to 1 cent. At this rate, workers can reason-
ably earn above the U.S. minimum wage for responding to
questions and performing simple search queries, while still
providing a reasonably priced service to the user. Further-
more, these numbers can be tuned by developers to best suit
their application.

To prevent these rewards from being abused by workers, we
also adjust the points over sequential inputs sent without any
user feedback by reducing the value of each subsequent con-
tribution. Reward values are reset with each user input. This
means that the points given to workers for each contribution
to the same response decreases, removing some of the incen-
tive for workers to provide excess input. Since Chorus’s goal
is a consistent dialogue, reducing the number of responses a
worker can submit without some kind of user input does not
limit the system’s functionality, so absolute limits can also be
enforced if desired (we limited workers to 3 contributions per
user message).

Challenge: Conversational Memory
Memory is an important aspect to any conversation because
it allows participants to have a shared context, and history of
events and topics covered. This reduces the total amount of
information that must be conveyed by largely eliminating the
need for information to be repeated, and allows more infor-
mation to be transferred with each utterance as the conversa-
tion progresses.

Context is typically gained over the course of one or more
conversations. However, since the crowd is dynamic, we must
account for workers who join conversations that are already
in-progress and may not have been around for previous con-
versations. The chat history logs contain this contextual infor-
mation, but having each worker read through the entire con-
versational history with a particular user eventually becomes
prohibitively time consuming and difficult. Instead, we need
a means of directing users to the most important aspects of a
conversation without making them parse extensive logs.

To support memory, we add the “Working Memory” section
to the crowd workers’ user interface. This area shows lines
from previous conversations and summarized facts that may
be useful when formulating responses.

In the initial version of the system, crowd workers were al-
lowed to curate the memory while also producing and voting
on potential responses. In this version, workers could move
lines of dialog from the chat window into the working mem-
ory area if they believed that it would be useful later, or con-
tribute summarized facts by entering them into the text field
at the bottom of the section. Workers could also increase or
decrease the importance of each line in the crowd’s memory
by voting, and the lines were sorted in descending order.

In our studies of the initial prototype, described later, we
found that the overhead of asking users to perform both the
“chat” task and this “memory curation” task was too much.
For this reason, in the current version of the system we split
these two tasks to different sets of crowd workers. Workers
in the chat task are no longer able to add items to the work-
ing memory or change their order in the list. A second set
of workers is then recruited for the memory task. They see
a new interface that allows them to browse the conversation
history, add items to the memory by selecting lines of dialog
or typing in their own summaries of facts, and vote for facts
they think are important, but cannot participate in the chat.

The chat task and memory task can proceed simultaneously,
but work on the memory task does not have the same real-
time requirements of the chat task. In fact, workers on the
memory task can only be productive if there is a sufficient
amount of new conversation content to process. Thus, work-
ers for this task can be recruited only occasionally during a
conversation depending on its speed and length, or after the
end of a conversation.

Contributions to the collective memory are rewarded using
the same multi-tiered point system described above for the
chat task, although this may not be ideal given that this task
is somewhat different. Further investigating the best reward
scheme for the memory task is left for future work.



Challenge: Keeping Workers Engaged
In order to pay workers who may remain active in the task
for different lengths of time fairly, we base payments on the
number and accuracy of their contributions. This means that
workers are paid based on their contributions to the conver-
sation over any span of time, preventing them from being
encouraged to leave sooner by paying a fixed amount. Fur-
thermore, we expect workers will be encouraged to remain
connected longer than they otherwise would because of the
promise of continued pay and because they are compensated
for their increased knowledge of the task as it continues, which
makes it easier for them to respond quickly and accurately.

During our example, Susan only paid a small amount for
workers to complete her task because workers were paid based
on their useful input, and she was able to pay the crowd only
for a small unit of time (a few minutes). This is consider-
ably cheaper than hiring an individual, dedicated employee
to serve as Susan’s assistant when she may need it. It also
provides quicker response time in many cases because work-
ers are able to search for answers on many fronts at once.

Interface Design
To this point, we have focused on a particular interface de-
sign that forwards only the single agreed upon response to
the user. This masks the fact that multiple crowd workers are
actually providing responses in the back-end and creates the
impression of talking to a single individual. We call this the
Filter version of the interface.

We have also experimented with an alternate interface called
Suggest, which allows the user to see multiple responses gen-
erated by the crowd as they are working. Some filtering is still
performed on the responses, but at a reduced level compared
to the Filter interface. This interface allows the user to pro-
vide feedback on the responses as they are being generated,
which may help guide the crowd to provide a better answer
even sooner.

In both interfaces, we also present the users and workers with
a “typing” status indicator that tells the other party that a
response is being composed, similar to the feature found in
many instant messaging clients. To determine when the crowd
response is being composed, Chorus checks if there were cur-
rently any active proposals that have not yet been forwarded
to the user.

FORMATIVE STUDY
To begin exploring how to use the crowd as a conversational
partner, we conducted a formative study with an early ver-
sion of Chorus. This version used a simple voting mechanism
that did not remove votes for users that disconnected before
the required agreement threshold was reached, allowed crowd
workers to curate the collective memory directly, and did not
reduce reward values for actions leading to a single response.
In addition, workers were not shown a tutorial before they
began the task.

We recruited a 23-year-old user who had no prior experience
with Chorus to have a series of conversations with it. This
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Figure 3. Results for the conversations with Chorus..

user carried out conversations starting with one of two ques-
tions: (i) Will dog breed X be good for my apartment? and
(ii) what is the best place to eat near Y? The dog type and city
in these questions were altered each iteration just in case any
of the workers overlapped from a previous trial.

In our analyses, we reviewed several hundred lines of conver-
sation and interaction with Chorus, focusing on overall per-
formance and conversational consistency. Over the course of
the study, Chorus recruited a total of 33 unique workers, with
an average of 6.7 workers contributing to each trial. Over-
all, Chorus filtered out 37.5% crowd responses and answered
84.62% of inquiries correctly (with useful information).

To investigate conversational consistency, we ran three exper-
iments. In each, we used 3 conversations spanning a total of
112 lines suggested by the crowd. Each of these lines was
hand-coded by two researchers as “on topic” or “off topic.”
This was filtered down to 70 lines by the curation system, and
among these only a single off-topic line was spoken across all
three conversations. A set of 13 questions were asked with 12
answered successfully by the crowd during the conversations.
These results are summarized in Figure 3.

Throughout these experiments, we observed the crowd pro-
viding serendipity unavailable in traditional automated search,
with workers suggesting outcomes not considered by the orig-
inal participant and building on one another’s responses. For
instance, in a typical example, the requester provided Cho-
rus with the query, “I am looking for a place to eat dinner.”
Chorus responded with “There is Asian Fusion joint on 3rd
and Molly Ave. It serves amazing cuisine.” Following a brief
interlude, the crowd provided the additional, unsolicited sug-
gestion, “I also saw a Groupon for 1/2 off!” This was a rel-
atively frequent occurrence: in 26 accepted lines of discus-
sion, workers prompted requesters with additional informa-
tion concerning aspects not initially suggested as part of the
starting query. These results (an effect of the information for-
aging behavior of groups) are deeper than those that would be
obtained through search on a site such as Yelp, and suggests
that there is additional utility in using conversations with hu-
mans as an intermediary when interacting with software. In
particular, a crowd-based dialogue partner can significantly
augment and improve the utility of software interfaces by
providing parallelized search and the ability to recognize and
provide relevant facts based on their personal knowledge.

EXPERIMENTS
To test the feasibility of using the crowd as a conversational
partner, we performed experiments focusing on two different
aspects: (i) conversational consistency (measured in terms of
topic maintenance and coherent answers), and (ii) memory of
past events (measured in terms of factual recall).



Conditions
Based on our formative study, we designed 3 variants of Cho-
rus that we used in the study. We also included a control
condition in which users simply searched the web for their
own answers. The conditions were as follows (Figure 4):

• Filtered: This is the complete version of Chorus, which
asks a group of workers to collectively propose answers
to user’s questions, and vote on one another’s responses to
find the best ones. This approach benefits from finding the
best answers from a range of people, each with different
sets of prior knowledge and approaches to search. How-
ever, requiring an explicit voting step prevents answers from
being forwarded as quickly as possible.

• Solo: In this condition, Chorus is powered by a single
worker. This means that there is no underlying collabo-
rative search, or wide variety of prior knowledge. How-
ever, it also means that the system does not have to wait for
workers to agree with one another, potentially reducing the
response time.

• Unfiltered: In this condition, Chorus uses a crowd to gen-
erate responses, but does not require any agreement to for-
ward them to the end user. This means users can bene-
fit from the diversity of the crowd, while not reducing the
speed at which individual answers are provided. However,
because responses are not filtered, unhelpful or redundant
responses might be included. Thus, this might not be as
helpful to users who are occupied with other tasks during
their search (e.g. driving or holding another conversation).

• Google: The fourth condition asked users to find informa-
tion themselves using Google. This acted as a baseline for
their feedback on the system.

Since chatting via an instant messenger is often not done as a
stand-alone task, we allow users to use the web on a different
task during our tasks, returning when they received a new
message from the system.

In our experiments, the crowd was recruited from a combi-
nation of Amazon Mechanical Turk (90% approval rating or
higher, composing 77% of our workers) and MobileWorks
(no restrictions, composing 23% of workers). These workers
were paid 25 cents to complete the interface training, plus an
additional three cents for each contributed message accepted
by Chorus, and one cent for each vote towards an accepted
message contributed by another worker. Our tests used a to-
tal of 100 unique workers with at least 4-5 workers beginning
each Filter and Unfiltered session (as well as workers com-
ing and going throughout), and exactly 1 worker at any given
time during single-worker sessions (described below).

Conversational Consistency and Dialogue
In our experiments we focused on the crowd’s ability to gen-
erate reasonable responses to user questions. To help control
for the potential complexity user questions and ensure results
were not skewed by the varying types of participants’ im-
promptu questions, underspecified task descriptions, or par-
ticular communication styles, we generated a script for each
of our four tasks and asked our participants to follow the
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Figure 4. Tradeoff between speed and ease of parsing results. While
Solo results in a small set of responses and reasonable response time, the
answers also lack variation. Both Filtered and Unfiltered approaches
give more broad answers interactively, but Unfiltered returns a result
quicker. Older, offline methods, such as Forums, can return varied an-
swers but don’t return answers in real-time.

script as closely as they could, while still allowing the con-
versation to flow naturally as if would if they were talking to
another person (all while following the persona laid out in the
script). We used the following task goals to generate scripts:

• (i) Find information about things to do when traveling to
Houston, TX that are not “too touristy”.

• (ii) Discuss the options available for getting a dog, given
the constraints of a small apartment near a park in Wash-
ington, D.C.

• (ii) Find an interesting dinner date idea that is more unique
than just dinner and a movie.

• (iv) Get step by step directions about how to make lasagna.
Users remember only after an initial response that they
failed to mention the dish they want to prepare must be
meat and gluten free.

Specifics of the tasks, such as location or dog size, was varied
between trials in order to prevent workers from being able
to just repeat responses from previous trials. Each partici-
pant was asked to complete all four scripts using three dif-
ferent versions of Chorus as well as Google to get a baseline
for finding a solution to one of the scripted problems using
a conventional search engine. Conversations were allowed to
be free-form as long as the topic was addressed. For these
tests, workers were not provided any chat history on which to
base their answers, meaning that each test was treated as the
crowd’s first contact with a given user, and in fact the user had
a different identity they played for each question asked. To
prevent workers who may have previously completed a ses-
sion from having an unfair advantage, we altered task details
such as user city or preferences. As a baseline, we also com-
pared users’ performance on a conventional keyword search
engine to find information. While we expect keyword search
to be much quicker, because the user must define their own



Figure 5. A clipped view of the raw chat log (left), and the filtered view seen by the requester (right). Messages in pink did not receive sufficient votes
from the crowd to make it into the requester view. Some of these messages did not contribute to the conversation (e.g. new workers asking questions
about the task in the beginning), while others were simply not chosen.

terms even when unfamiliar with a space, there is less poten-
tial for finding a useful answer that may not be closely related
to the initial search terms.

Trials were spaced out over a period of four days and the order
of the conditions randomized. We recruited 12 participants to
act as users and hold conversations based on our scripts. They
were asked to hold a conversation until Chorus provided an
answer to their question (including followups), 15 minutes
passed without a single response from the crowd, or 30 min-
utes total passed without a correct answer being given. Once
done, four of the authors coded the responses according to the
following scheme:
• On-Topic: The response furthers the topic of conversation

that the user proposed by providing an answer or opinion
related to the question that the user asked. If the relevance
of a response is unclear, the user’s response (correction or
affirmation) is used to determine its status.

• Off-Topic: The response is either not clearly related to
the user’s current topic (including unsolicited information
about the worker them self) or provides an instantly identi-

fiable incorrect answer to the user’s question (for example,
Q:“What is the capitol of Texas?” A:“Outer space.”)

• Side Chatter: Conversations between workers either about
the task itself, or general conversations and queries.

• No Code: The response is blank, a correction or typo, or
otherwise unintentionally not interpretable. This does NOT
cover messages which are explicitly spam, which are clas-
sified as off-topic.

Each of the 960 messages in our dataset was coded by these
four researchers, resulting in a Fleiss’ Kappa score of 0.67
(strong agreement). Their ratings were then combined with
even weight to score the success of the system. We found
that 88.3 % of messages were classified as On-Topic, 9.3% of
messages were Off-Topic, and 1.7% consisted of Side Chat-
ter between workers. Out of all messages, just 68.6% were
accepted, with a final accuracy visible to the user of 95.60%.
This relative improvement of 8.3% was significant (p < 0.05).

We also tracked the number of user-generated queries and
clarification details that were addressed completely in answers,
partially addressed, or not addressed at all by the crowd. This



gives us a measure of how well the crowd listened to the user
(as opposed to just spouting off answers without correct de-
tails). We considered an information-containing message as
addressed when the response did not violate any of the facts
in the message, partially addressed if it violated some but not
all, and not addressed if the response did not take the informa-
tion in the message into account at all. We used the same rat-
ing scale for questions, but required that workers provided an
actionable solution to the users. 92.85% of questions asked
by users were addressed completely, another 3.38% were ad-
dressed partially, and only 3.77% were not addressed. In
addition, many of those questions and facts that the crowd
failed to answer or use were less important tidbits and fol-
lowup questions similar to those that often go unseen the first
time in any conversation or instant messenger. These results
demonstrate that the crowd is very attentive to the information
that users provide.

Individual Workers and Crowd Assistants
Across 24 tests involving the crowd-powered version of Cho-
rus, 12 with filtering and 12 without, users’ information goals
were met 100% of the time. In contrast, when a single crowd
worker was recruited to answer questions, the system was un-
responsive in 2 tests, and failed to finish within the 30 minute
bound in 2 more. This means that in a third of all uses, the
single-worker version of the system could not complete the
task requested. Workers might have been unresponsive be-
cause workers did not fully understand the task, queued multi-
ple tasks (contrary to the task instructions) and were planning
to get to ours later, lost connection, or some other unknown
cause. Workers not responding in a reasonable amount of
time may have likewise been for a variety of reasons such as
a poor connection, long search times for a single piece of in-
formation (which took longer than 15 minutes to complete),
or in a few cases, workers leaving as soon as they did the min-
imum amount of work possible. The reliability of the crowd
over single workers recruited from these platforms is one of
the primary benefits to using a group in user interaction do-
mains, alongside improved response speed and increased op-
portunities for creative and novel answers.

Response Speed
To answer a question, workers either need to have prior knowl-
edge of the answer, or find an answer via a web search. On
average, individuals have less prior knowledge than a group
does collectively, and so we expect individuals to need to
search more often. Workers generally disengage from the di-
alogue to perform a search. Chorus is designed to leverage
the prior knowledge of the group. When using Chorus, some
workers can continue to engage in conversation with users to
help find more helpful points, while others who believe they
can find the answer go to search for specific information. Be-
cause the collective prior knowledge is larger, many questions
may be answered without the need to search at all.

These factors combined result in a significant reduction in
the average time until the user gets a first response from the
crowd for a given question. Using a single worker, the av-
erage response time between a question and a response was
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Figure 6. Results for the conversations with Chorus including memory.

103.4 seconds, likely due to workers already being engaged
in a search, or doing other tasks between responses. In the
Suggest condition, there was a significant reduction of 56.9%
(p < 0.01) in this delay, resulting in only a 44.6 second aver-
age response delay. The Filter condition also had a significant
decrease of 51.5% (p < 0.05) over the single-worker case,
with an average latency of 50.13 seconds.

Individual conversations with Chorus averaged 11:21 minutes
(median 10:51). While no user took more than 5 minutes on
Google, a majority of people independently commented that
they preferred Chorus due to the answers they received being
easier to scan through and containing suggestions that would
not have come up had they simply used a keyword search. In
many cases this involved the crowd clarifying a question or
suggesting a different search parameter (i.e. type of food in
a given city specializes in), which would not have been done
by a search engine. As a result, overall search time is can be
a deceptive measure, since longer interactions frequently lead
to much higher satisfaction with the final result.

Answer Diversity
Online searches for information can be limited by a user’s
preconceived notions of how to describe the information that
is sought. The crowd permits access to a wider range of expe-
rience, prior knowledge, search methods, and creativity than
any single individual. We observed that the crowd was able to
come up with both diverse sets of answers, as well as diverse
sets of variations on a given topic. For instance, when asked
to provide a set of recommendations for restaurants in the Los
Angeles area, crowd members suggested both commonplace
suggestions as well as highly unusual ones. This can lead to
more effective information provided to end users.

Memory
To test the system’s ability to remember information over
time, we ran an experiment that simulates new members of
the crowd arriving to Chorus to find pre-populated short-and
long-term memory logs. We wanted to find whether the crowd
would be willing and able to use the highlighted history logs
to bring themselves up to speed on the current conversation.
We generated an artificial chat history and presented new work-
ers with information pre-highlighted by the authors in the
memory window. This simulates a prior chat interaction car-
ried out by past participants in Chorus. In our test, the ar-
tificial chat history simulates a conversation between a user
and Chorus concerning a trip the user is taking, and con-
tains information about the user’s dietary restrictions and the
city they are visiting. We asked the crowd to ‘continue’ the
conversation with a new live user, and asked them questions
that assume background available from the memory, includ-
ing suggestions for new restaurants in the area. The user’s
script assumed that the crowd had full knowledge of prior



requester:  "Hi" 
crowd: "hello" 
Requester: "Do you know of 2 or 3 fun things that I can do 
in Houston that aren't too touristy?" 
crowd: "A good place to eat in Boston is Neptune Oyster" 
crowd: "Are you on a budget?" 
requester: "Yeah I would rather they aren't too expensive." 
crowd: "you always need to look at how expensive they are" 
crowd: "this places can be very expensive" 
crowd: "something good that i can request is for you to use 
google map" 
crowd: "what kind of things are you looking to do? concerts, 
sports, etc?" 
crowd: "Try googling eating on a budget in Boston." 
requester: "Anything that's fun but not too touristy." 
crowd: "and look for the areas you want to visit and check out 
the nearby restaurants" 
crowd: "Do you enjoy outdoor activities?" 
requester: "Yes." 
crowd: "well if you go to Boston they have so many free" 

!Figure 7. In this conversation, the user is asking about Houston, but one
of the crowd workers is confused and suggests facts about Boston. These
proposals (in red) are not selected to be forwarded on to the user.

interactions, and did not contain reminders about facts pre-
viously mentioned. The user was free to specify these facts
only if explicitly prompted by the crowd.

Between-Task Consistency
We ran four memory experiments. In each, we held 3 conver-
sations spanning a total of 259 lines suggested by the crowd.
This was filtered down to 104 lines by the curation system.
The crowd was frequently successful in recalling facts using
working memory. We separately recorded both successful
use of the working memory to recall facts and failure to do
so (Figure 6). In 8 of 10 conversations, the crowd was able
to recall facts stored in the working memory from prior ses-
sions, but in the remaining 2 scenarios required prompting.
We found that prompted crowds displayed a cascade effect,
where workers were rapidly able to identify forgotten facts
when prompted and mark them as salient. This is likely be-
cause a user implying that the crowd should already know a
fact makes the workers seek the information within the inter-
face, helping them to notice previously missed information,
then recover information that they initially bypassed.

DISCUSSION
The ability to hold consistent, in-depth, conversations with
the crowd opens up a range of interaction possibilities. Our
tests showed that the crowd was able to generate consistent
and helpful responses to users with high reliability. We are
currently working on deploying this system in a variety of sit-
uations, including more complex software such as restaurant
reservation and flight booking applications. We are also in-
vestigating the idea of ‘embodied crowds’ via a mobile crowd-
powered information kiosk that can answer general questions
using Chorus to present users with a conversational interface.

Quality and Reliability
For many applications, we are interested in whether or not
the crowd can respond with high quality feedback compared

requester: "thanks! how much does the space center visit cost?" 
crowd: "GENERAL ADMISSION AT THE GATE ONLINE DISCOUNT 
Adults: $22.95 $11.45 Children (Age 4-11): $18.95 $9.45 Seniors: $21.95 
$10.95" 
requester: "great, and how much would it cost to do the houston zoo, 
the miller outdoor theatre,the space center, bowling all together?"  
crowd: "How many adults and kids would be going?" 
requester: "just a single adult" 
crowd: "How long will you be staying in Houston?" 
crowd: "It will about 150" 
requester: "two days (full days)" 
crowd: "It will cost around $150" 
crowd: "I will be less if you buy tickets online!" 
requester: "ok thanks for your help" 
crowd: "You Welcome.Have a good day" 
crowd: "There might be a city pass available from the local tourist office." 
requester: "what does the city pass allow me to do?" 
crowd: "CityPass attractions include: Space Center Houston (NASA) 
Downtown Aquarium Houston Museum of Natural Science Option ticket: 
Choose to visit either Houston Zoo or Kemah Boardwalk Option ticket: 
Choose to visit either Museum of Fine Arts, Houston or The Children’s 
Museum of Houston "  
requester: "perfect, i will do that. bye!" 
 

Figure 8. In this conversation, the user was concerned with price. Not
only does the crowd provide the information the user requested, but it
also finds a “City Pass” – a less expensive way to do the activities that
the end user wants to do that he didn’t know about.

to what an expert individual might present. For example, in
the restaurant finding task, proposing McDonalds as a solu-
tion might be valid answer, but not one that is always very
helpful to the user. Qualitatively, in both the experiments we
present in this paper and in continued testing, the crowd has
consistently made very useful suggestions that went well be-
yond the minimum effort. This behavior is supported by the
two-role (proposers and voters) system that requires only a
small subset of the workers to seek out high-quality informa-
tion, whereas the rest need only to identify the relative utility
of an answer and agree with the best one by voting.

The possibility of using Chorus in real-world settings also
means that important situations will arise in which an answer
from the crowd must be trusted and thus needs to be as reli-
able as possible. A particular challenge is encouraging users
to dig deeply into possible solutions. For example, a worker
might propose an inappropriate restaurant to a user with a par-
ticular allergy, perhaps because the food served at the restau-
rant was not obvious from the name (e.g. “John’s Grill” serv-
ing seafood). It is possible the other crowd workers will agree
with the option without doing further (unrewarded) research.

In future work, our goal is to find ways to encourage workers
to do these type of deep knowledge searches, then use redun-
dant results of deep searches performed by different workers
to increase the reliability of the system on critical tasks where
the additional cost is warranted.

Difficulties
While our results showed very high rates of correct responses
and low rates of unhelpful responses, there are still areas of
difficulty. For instance, using the current method for curating
crowd memory, only a limited number of facts can be remem-
bered at once without requiring workers to complete a search
task within the recorded memories themselves. Thus, over a



requester: "Hi, I want to know how to make lasagna?" 
crowd: "Vegetarian or with meat?" 
requester: "With meat, but I don't eat red meat." 
crowd: "You can find a recipe for a lean lasagna made with turkey meat here: 
http://www.epicurious.com/recipes/food/views/Lean-Lasagna-230145" 
crowd: "It makes 8 servings and takes 1 hour." 
crowd: "Would you like another recipe?" 
crowd: "Does that use any mushrooms?" 
crowd: "It uses 1/2 cup chopped mushrooms. Would you prefer one without 
mushrooms?" 
requester: "Yes, how about a recipe without mushrooms." 
crowd: "Here is one made with Italian Turkey sasuage, no mushrooms: 
http://www.chow.com/recipes/30279-turkey-sausage-lasagna" 
crowd: "Would you prefer a different recipe? Or does this work for you?" 

 
Figure 9. In this conversation, the crowd helps the user search for a
recipe appropriate for him to make lasagna. Not only does the crowd
find relevant web pages and refine their search based on user feedback,
but they also ask relevant questions about dimensions the user did not
think to specify upfront (such as if the recipe should be vegetarian).

longer span of interactions, most facts would not be remem-
bered by the assistant. in the future, our goal is to create a
hybrid approach that learns from the importance of certain
facts based on the topic of conversation, then is able to re-
trieve older pieces of information and display it to workers.

Payments
Another significant challenge in crowdsourcing systems that
ask workers for variable input faces is adequately rewarding
workers for their contribution. This is especially true of Cho-
rus, where workers might spend anywhere from a few sec-
onds to several minutes finding a response, but are only re-
warded based on the number of answers accepted by other
workers. While our incentive mechanism makes spending
more time result in a better response will increase the like-
lihood that other workers find it important, there is still no
way to determine exactly how valuable the response is.

One way to help solve this problem might be to vary the
payment to workers based on the magnitude of the crowd’s
agreement with their response, since we observed that al-
most unanimous agreement (among active workers) on an-
swers that were clearly useful or especially helpful. Another
approach might be to let the user rate the helpfulness of each
answer, which might also prove helpful to give workers on-
going feedback, or train automated conversational assistants.

From reviewing the results for our tasks though, we feel that
workers were adequately compensated in the end. In fact,
many even emailed us to say they would like to take more of
these tasks if possible. This indicates both fair pay, and that
workers like the conversational task.

FUTURE WORK
Chorus presents a wide range of potential future directions of
work involving systems that have previously been limited by
the robustness of automated conversational interaction sys-
tems, as well as providing a model for future crowdsourcing
workflows. In this section, we discuss some of the potential
issues that might arise for such applications.

Privacy
Crowds that are capable of learning about users over time
introduce privacy concerns. As with many communication
technologies, users must be mindful of the fact that others
can view the information they provide to the system and ad-
just their behaviors and use of the system accordingly. To
support this, developers must take care to make users aware
of the fact that people, not just software, are used to support
their system in order to facilitate these behavioral choices.

There are also a variety of tasks that Chorus could perform
for users if not for issues of privacy. For example, if a user
was comfortable giving the crowd their online banking login
information, it would be possible for the crowd to pay bills
and carry out other sensitive tasks. Such tasks might become
more palatable if techniques could be developed to hide such
sensitive information from the crowd workers while allow-
ing them to perform the task. For example, workers might
perform web-based tasks through a proxy that automatically
hides sensitive information and restricts them from perform-
ing known malicious operations.

Merging the Crowd with Machines
The current version of Chorus relies heavily on human in-
volvement in all areas of the interaction, but there is likely
room for the strategic addition of machine learning algorithms
throughout the process. For example, an automated dialog
system could be employed to answer simple requests or an
automated system might act as one of crowd workers along-
side the other workers in suggesting or voting on responses.
The advantage of this approach is that fewer crowd workers
might be needed per conversation, or possibly not needed at
all in the case of certain conversations, especially for those
topics that have come up repeatedly in the past.

Playing a Role
In the current version of Chorus, the virtual agent does not
have a pre-defined personality or play the role of a charac-
ter, but these might be potentially advantageous features for
the agent. For example, an agent acting as a customer sup-
port representative for a company might be given an agree-
able and open personality. In another case, an agent might
act as a character in a video game. In this case, the crowd
must act consistently with beliefs that might not be held by
any constituent member, and prevent biases and contradictory
opinions from coming through in the response. One way this
might be implemented is through integration with machine
algorithms, as suggested above. For example, an algorithm
might down vote some responses that it identifies as contra-
dictory or manipulate the text of a “locked in” response to be
more in line with the pre-defined personality of the agent.

Voice-Enabling Existing Interfaces
One of the most impactful uses of Chorus may be to en-
able semi-autonomous natural language interfaces for exist-
ing systems via both text and voice. In this work, we focus
on tasks that the workers can individually perform then return
with the results, such as a web search task or general question



answering. However, to allow users to control specific sys-
tems that they might not otherwise have direct access to, we
need workers to be able to collectively control the current in-
terface based on the knowledge of the situation and intention,
and provide feedback that takes into account the current task
and system state. A particularly advantageous use of Cho-
rus might be for disabled users, such as blind [19] or motor
impaired users, or ordinary users who are situationally dis-
abled [23]. In such a use case, the crowd workers in the chat
condition could be given direct access to an existing interface
through a crowd control system, such as Legion [17].

CONCLUSION
We have presented Chorus, a crowd-powered conversational
assistant that features natural two-way dialogue between the
user and the assistant. While the assistant appears to be a
single individual, it is actually driven by a dynamic crowd
of multiple workers using a specially designed interface. We
have demonstrated that Chorus can assist with a variety of
tasks across domains, maintain consistency over the course of
multiple interactions, and provide a new framework for coop-
eration among crowd workers. Chorus sets the stage for a rich
new area of research in crowd-powered conversational assis-
tants. Such assistants will be able to learn about the user’s
preferences over time, making them capable of improving
the quality of interaction with the user as they gain experi-
ence. In this way, Chorus also acts to add a notion of agency
to existing software, allowing them to complete tasks without
the user’s explicit guidance at every step. We believe Cho-
rus represents not only an interesting system for assistance
by the crowd, but potentially a more natural way to interact
with current and future crowd-powered systems.
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