
ARTICLE OPEN

Using AI to measure Parkinson’s disease severity at home
Md Saiful Islam 1,2✉, Wasifur Rahman1, Abdelrahman Abdelkader1, Sangwu Lee 1, Phillip T. Yang3, Jennifer Lynn Purks3,
Jamie Lynn Adams3, Ruth B. Schneider 3, Earl Ray Dorsey 3 and Ehsan Hoque1

We present an artificial intelligence (AI) system to remotely assess the motor performance of individuals with Parkinson’s disease
(PD). In our study, 250 global participants performed a standardized motor task involving finger-tapping in front of a webcam. To
establish the severity of Parkinsonian symptoms based on the finger-tapping task, three expert neurologists independently rated
the recorded videos on a scale of 0–4, following the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS). The inter-rater reliability was excellent, with an intra-class correlation coefficient (ICC) of 0.88. We developed computer
algorithms to obtain objective measurements that align with the MDS-UPDRS guideline and are strongly correlated with the
neurologists’ ratings. Our machine learning model trained on these measures outperformed two MDS-UPDRS certified raters, with a
mean absolute error (MAE) of 0.58 points compared to the raters’ average MAE of 0.83 points. However, the model performed
slightly worse than the expert neurologists (0.53 MAE). The methodology can be replicated for similar motor tasks, providing the
possibility of evaluating individuals with PD and other movement disorders remotely, objectively, and in areas with limited access
to neurological care.
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INTRODUCTION
Parkinson’s disease (PD) is the fastest-growing neurological
disease, and currently, it has no cure. Regular clinical assessments
and medication adjustments can help manage the symptoms and
improve the quality of life. Unfortunately, access to neurological
care is limited, and many individuals with PD do not receive
proper treatment or diagnosis. For example, in the United States,
an estimated 40% of individuals aged 65 or older living with PD do
not receive care from a neurologist1. Access to care is much scarce
in developing and underdeveloped regions, where there may be
only one neurologist per millions of people2. Even for those with
access to care, arranging clinical visits can be challenging,
especially for older individuals living in rural areas with cognitive
and driving impairments.
The finger-tapping task is commonly used in neurological

exams to evaluate bradykinesia (i.e., slowing of movement) in the
upper extremities, which is a key symptom of PD3. The task
requires an individual to repeatedly tap their thumb finger with
their index finger as fast and as big as possible. Videos of finger-
tapping tasks have been used to analyze movement disorders like
PD in prior research. However, the videos are often collected from
a few participants (<20)4, or the studies only provide binary
classification (e.g., slight vs. severe Parkinsonian symptoms;
Parkinsonism vs. non-Parkinsonism) and do not measure PD
severity5,6. Additionally, existing models lack interpretability,
making it difficult to use them in clinical settings. Most
importantly, the videos are noise-free as they are recorded in a
clinical setting with the guidance of experts. Machine learning
models trained on clean data may not perform effectively if the
task is recorded in a noisy home environment due to the models’
susceptibility to data shift7. Consequently, these models may not
enhance access to care for Parkinson’s disease.
Imagine anyone from anywhere in the world could perform a

motor task (i.e., finger-tapping) using a computer webcam and get

an automated assessment of their motor performance severity.
This presents several challenges: collecting a large amount of data
in the home environment, developing interpretable computa-
tional features that can be used as digital biomarkers to track the
severity of motor functions, and developing a platform where
(elderly) people can complete the tasks without direct supervision.
In this paper, we address these challenges by leveraging AI-driven
techniques to derive interpretable metrics related to motor
performance severity and apply them across 250 global partici-
pants performing the task mostly from home. Three experts and
two non-experts rated the severity of motor performance watch-
ing these videos, using the movement disorder society unified
Parkinson’s disease rating scale (MDS-UPDRS). Our proposed
interpretable, clinically relevant features highly correlate with
the experts’ ratings. An AI-based model was trained on these
features to assess the severity score automatically, and we
compared its performance against both expert and non-expert
clinicians. Note that, all the experts are US neurologists with at
least 5 years of experience in PD clinical studies and actively
consult PD patients. The non-experts are MDS-UPDRS certified
raters but do not actively consult PD patients. One of the non-
experts holds a medical degree from a non-US institution and has
actively engaged in multiple PD clinical studies. The other non-
expert is a second-year neurology resident who has been active in
movement disorder research for 10 years. Figure 1 presents an
illustrative overview of our system.

RESULTS
Data
We obtained data from 250 global participants (172 with PD, 78
control) who completed a finger-tapping task with both hands
(see Fig. 2 for examples). Participants used a web-based tool8 to
record themselves with a webcam primarily from their homes.
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Fig. 1 Overview of the AI-based system for assessing the severity of motor performance. Anyone can perform the finger-tapping task in
front of a computer webcam. The system employs a hand-tracking model to locate the key points of the hand, enabling a continuous tracking
of the finger-tapping angle incident by the thumb finger-tip, the wrist, and the index finger-tip. After reducing noise from the time-series data
of this angle, the system computes several objective features associated with motor function severity. The AI-based model then utilizes these
features to assess the severity score automatically. Authors have obtained consent to publish the image of the participant.
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Fig. 2 Data collection. The participants, both those with Parkinson’s disease (PD) and healthy controls, performed the task primarily in a noisy
home environment without any clinical supervision. The dataset includes blurry videos caused by poor internet connection, videos where
participants had difficulty following instructions, and videos with overexposed or underexposed backgrounds. These issues are common
when collecting data from home, particularly from an aged population that may be less familiar with technology than other age groups.
Authors have obtained consent to publish the images of the participants.
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Demographic information for the participants is presented in
Table 1.
Following the MDS-UPDRS guidelines, we considered each

participant’s left and right-hand finger-tapping as two separate
videos. All these 250 × 2= 500 videos are rated by three expert
neurologists with extensive experience providing care to indivi-
duals with PD and leading PD research studies. However, after
undertaking manual and automated quality assessments, we
removed 11 videos from the dataset. Ultimately, we had 489
videos for analysis (244 videos for the left hand and 245 for the
right hand). We obtained the ground truth severity score (a) by
majority agreement when at least two experts agreed on their
ratings (451 cases), or (b) by taking the average of three ratings
and rounding it to the nearest integer when no majority
agreement was found (38 cases). Supplementary Table 2 contains
additional information on how the severity scores are distributed
across demographic subgroups.

Rater agreement
The three expert neurologists demonstrated good agreement on
their ratings, as measured by (a) Krippendorff’s alpha score of 0.69
and (b) Intra-class correlation coefficient (ICC) score of 0.88 (95%
confidence interval: [0.86, 0.90]). Figure 3 provides an overview of
pair-wise agreement between expert raters. All three experts
agreed in 30.7% of the videos, and at least two agreed in 93% of
the videos. The three raters showed a difference of no more than 1
point from the ground truth in 99.2%, 99.5%, and 98.2% of the
cases, respectively. These metrics suggest that the experts can
reliably rate our videos recorded from home environments.

Features as digital biomarkers
We quantified 47 features measuring several aspects of the finger-
tapping task, including speed, amplitude, hesitations, slowing, and
rhythm. We also quantified how much an individual’s wrist moves
using 18 features. For each feature, Pearson’s correlation

coefficient (r) is measured to see how the feature is correlated
with the ground truth severity score, along with a statistical
significance test (significance level α= 0.01). We found that 22
features were significantly correlated with the severity scores,
which reflects their promise for use as digital biomarkers of
symptom progression. Table 2 shows the top 10 features with the
highest correlation. These features are clinically meaningful as
they capture several aspects of speed, amplitude, and rhythm (i.e.,
regularity) of the finger-tapping task, which are focused on the
MDS-UPDRS guideline for scoring PD severity.
Traditionally, human evaluators cannot constantly measure the

finger-tapping speed. Instead, they count the number of taps the
participant has completed within a specific time (e.g., three taps
per second). However, in our case, the videos were collected at 30
frames per second rate, thus allowing us to track the fingertips 30
times per second and develop a continuous measure of speed.
The former approach, the number of finger taps completed in unit
time, is termed as “frequency” throughout the paper, and “speed”
(and “acceleration”) refers to the continuous measure (i.e.,
movement per frame). Similarly, “period” refers to the time it
takes to complete a tap, and thus, is a discrete measure. In
addition, finger tapping amplitude is measured by the maximum
distance between the thumb and index-finger tips during each
tap. Since linear distance can vary depending on how far the
participant is sitting from the camera, we approximated amplitude
using the maximum angle incident by three key points: the
thumb-tip, the wrist, and the index fingertip. As we see in Table 2,
several statistical measures of continuous speed are significantly
correlated with PD severity. These granular computations are only
attainable using automated video analysis, which, to our knowl-
edge, was missing in prior literature.

Performance of non-expert clinicians
When an individual lacks access to a neurologist with expertise in
movement disorders, they may consult with a non-specialist

Table 1. Demographic characteristics of the participants.

Subgroup Attribute With PD Without PD Total

Number of participants 172 78 250

Sex, n (%) Male 109 (63.4%) 28 (35.9%) 137 (54.8%)

Female 63 (36.6%) 50 (64.1%) 113 (45.2%)

Age in years, n (%) (range: 18–86, mean: 62.13) Below 20 0 (0.0%) 3 (3.8%) 3 (1.2%)

20–29 0 (0.0%) 10 (12.8%) 10 (4.0%)

30–39 1 (0.6%) 3 (3.8%) 4 (1.6%)

40–49 5 (2.9%) 6 (7.7%) 11 (4.4%)

50–59 34 (19.8%) 14 (18.0%) 48 (19.2%)

60–69 64 (37.2%) 30 (38.5%) 94 (37.6%)

70–79 62 (36.0%) 12 (15.4%) 74 (29.6%)

Above 80 6 (3.5%) 0 (0.0%) 6 (2.4%)

Ethnicity, n (%) white 161 (93.6%) 69 (88.5%) 230 (92%)

Asian 2 (1.2%) 5 (6.4%) 7 (2.8%)

Black or African American 1 (0.6%) 2 (2.6%) 3 (1.2%)

American Indian or Alaska Native 2 (1.2%) 0 (0.0%) 2 (0.8%)

others 1 (0.6%) 0 (0.0%) 1 (0.4%)

not mentioned 5 (2.9%) 2 (2.6%) 7 (2.8%)

Recording environment, n (%) Home 140 (81.4%) 59 (75.6%) 199 (79.6%)

Clinic 25 (14.5%) 17 (21.8%) 42 (16.8%)

Unknown 7 (4.1%) 2 (2.6%) 9 (3.6%)

With PD column represents the participants with self-reported diagnosis of Parkinson’s disease, Without PD column represents the participants who did not
self-report to have Parkinson’s disease.
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clinician. Thus, it is critical to assess how a clinician with limited
expertise in movement disorders or Parkinson’s disease may
perform compared to experts in this field. To this end, we
recruited two investigators. The first investigator (referred to as
non-expert-1 throughout the manuscript) had completed an
MBBS (i.e., Bachelor of Medicine, Bachelor of Surgery) degree but
not additional medical training (e.g., residency), was certified to
administer the MDS-UPDRS, and had the experience of rating the
severity of PD symptoms in multiple research studies. The second
investigator (referred to as non-expert-2) is a second-year
neurology resident at a reputed medical center in the United

States. This investigator has been involved in movement disorders
research and clinical trials for 10 years and takes care of less than
20 PD patients a year. We asked the non-expert clinicians to rate
the same videos that the three experts had rated. We observed
moderate reliability in their ratings, with an average intra-class
correlation coefficient (ICC) of 0.75 compared to the ground truth
scores (Fig. 3). On average, the non-experts’ ratings deviated from
the ground truth severity score by 0.83 points, and the average
Pearson’s correlation coefficient (PCC) between the non-experts’
ratings and the ground truth severity scores was 0.61.
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Fig. 3 An overview of how the experts and the non-experts agreed on their ratings. Green dots indicate two raters having a perfect
agreement, while gray, orange, and red dots imply a difference of 1, 2, and 3 points, respectively. We did not observe any 4 points rating
difference. The high density of green and gray dots and an ICC score of 0.88 verifies that the experts demonstrated high inter-rater agreement
among themselves, and the finger-tapping task can be reliably rated when recorded from home. However, the non-experts were less reliable
than the experts, demonstrating moderate agreement with the three expert raters (the average ICC of a non-expert’s ratings and the ratings
from the three experts were 0.72, 0.74, and 0.70, respectively).
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Modeling the severity rating
We employed a machine learning model (i.e., LightGBM regres-
sor9) that predicts the severity of PD symptoms based on the
extracted features from a finger-tapping video. To evaluate the

model, we implemented a leave-one-patient-out cross-validation
approach, that leaves all data (e.g., videos of both left and right
hand) associated with a particular patient as a test set, and the
model is trained with the remaining data. The evaluation uses
multiple iterations to ensure that the performance is validated
once for each patient. The severity rating predicted by the model
is a continuous value, ranging from 0 to 4. We employed several
standard metrics used to assess the performance of machine
learning models in regression tasks: mean absolute error (MAE),
mean squared error (MSE), Kendall rank correlation coefficient
(Kendall’s τ), mean absolute percentage error (MAPE), Pearson’s
correlation coefficient (PCC), and Spearman’s rank correlation
coefficient (Spearman’s ρ). However, in this manuscript, we
primarily focus on MAE and PCC which are the most popular in
assessing a model’s regression capability. Also, to measure
classification accuracy, the continuous prediction is converted to
five severity classes (0, 1, 2, 3, and 4) by rounding it to the closest
integer. The classification result is reported in Fig. 4, showing that
the model’s predictions largely agree with the ground truth
severity scores. The model’s reliability in rating the videos is
moderate, as indicated by an ICC score of 0.76 (95% C.I.: [0.71,
0.80]). On average, the model predictions deviated from the
ground truth severity scores by 0.58 points, and the Pearson’s
correlation coefficient between the predictions and the ground
truth severity scores was 0.66. Since the ground truth scores were
derived from the three experts’ ratings, it is natural to find an
excellent correlation (PCC= 0.86) and a minimal difference
(MAE= 0.27) between an average expert and the ground truth.
However, this is an unfair baseline to compare the performance of
the model and the non-expert. Instead, we looked at how the

a. b.

c. d.

Fig. 4 Model performance. a We observe good agreement between the predicted severity and the ground truth scores. Green dots indicate
correct predictions, while gray, orange, and red dots imply a difference of 1–3 points between the predicted and actual scores. We did not
observe any 4 points rating difference. b The confusion matrix presents the agreement numerically. c The mean absolute error (MAE)
measures the difference between two ratings. The model incurs slightly higher MAE than an average expert but substantially lower MAE than
the non-experts. d Pearson correlation coefficient (PCC) measures the correlation between two sets of ratings. The model’s predicted severity
ratings are more correlated with the ground truth scores than the non-experts' (higher PCC) but less correlated than an average expert’s
(lower PCC) ratings.

Table 2. Features most correlated with the ground truth severity
scores for the finger-tapping task.

Feature Statistic r p-value Rank

Speed Inter-quartile range −0.56 10−33 1

Median −0.52 10−27 2

Maximum −0.32 10−10 6

Amplitude Median −0.50 10−25 3

Maximum −0.41 10−17 4

Frequency Inter-quartile range 0.32 10−10 5

Standard deviation 0.29 10−8 8

Period Entropy (i.e., irregularity) 0.32 10−10 7

Variance (normalized by the
average period)

0.28 10−8 9

Inter-quartile range 0.27 10−7 10

The ground truth scores are obtained from the aggregate of expert ratings.
r and p-value indicate Pearson’s correlation coefficient and significance
level (obtained by correlation test), respectively. Features are ranked based
on the correlation coefficients (the rank-1 feature is the most correlated
with the ground truth severity scores).
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expert neurologists agreed with each other to establish a human-
level performance of the rating task. On average, any pair of
experts differed by 0.53 points from each other’s ratings, and their
ratings were correlated with PCC= 0.72. In most of the metrics we
tested, the LightGBM regression model outperformed the non-
expert clinicians but was outperformed by the experts (Fig. 4).
Please see Supplementary Table 1 for details.

Interpretability of model predictions
We used SHapley Additive exPlanations (SHAP) to interpret the
outputs of the machine learning model. SHAP values provide a
way to attribute a prediction to different features and quantify the
impact of each feature on the model output10. This information
can be useful for understanding how a model makes decisions
and for identifying which features are most important for making
accurate predictions. We found that important features identified
by SHAP align well with our previously identified significant
features (see Table 2). Top-10 most important features include
finger-tapping speed (IQR), freezing (maximum duration and
number of freezing), absence of periodicity, period (variance,
minimum), wrist-movement (minimum, median), and frequency
(IQR), which are all significantly correlated with the ground-truth
severity score (at a significance level, α= 0.01). The only top-10
feature that does not correlate significantly with the severity score
is the median period (average time taken to complete each tap),
which is also underscored in the MDS-UPDRS guideline. These
results indicate that the model is looking at the right features
while deciding the finger-tapping severity scores from the
recorded videos, further suggesting the model’s reliability.

Analyzing bias
To better evaluate the performance of our model across various
demographic groups, we conducted a group-wise error analysis
that takes into account factors such as sex, ethnicity, age, and
Parkinson’s disease diagnosis status. This approach allows us to
assess any potential biases or inaccuracies in our model’s
predictions and make necessary improvements to ensure
equitable and accurate results for all users. We combined the
model predictions of the samples for each patient when they were
in the test set. Additionally, we tracked the demographic
attributes associated with each sample, allowing us to evaluate
the performance of our model across various demographic
groups.
Our model achieved a mean absolute error (MAE) of 0.60 points

(standard deviation, std= 0.48) for male subjects (n= 267) and
0.55 points (std= 0.39) for female subjects (n= 222), indicating
relatively accurate predictions for both sexes. Furthermore, we
conducted a statistical test (i.e., two-sample two-tailed t-test) to
compare the errors across the two groups and found no
significant difference (p-value= 0.21). We also performed a similar
error analysis on our model’s predictions for subjects with PD
(n= 333) and those without PD (n= 156). The model had an MAE
of 0.57 points for subjects with PD and 0.59 points for those
without PD. However, we found no significant difference in the
errors between these two groups (p-value= 0.61). These results
suggest that our model does not exhibit detectable bias based on
sex and performs similarly for PD and non-PD groups.
Age had a slight negative correlation with the error of model

predictions (Pearson’s correlation coefficient, r=−0.06). However,
the correlation was not statistically significant at α= 0.05
significance level (p-value= 0.20). This suggests that the perfor-
mance of the model is not significantly different across the
younger and older populations.
Finally, we tested whether the model exhibits bias based on an

individual’s ethnicity. Since we did not have enough representa-
tion from all the ethnic groups, the analysis only focused on the
white vs. non-white population. Our model had an MAE of 0.57

points (std= 0.45) for white subjects (n= 452), while the MAE was
0.65 (std= 0.41) for non-white subjects (n= 37). Although the
difference was not statistically significant (p-value= 0.29 based on
t-test) at a 95% confidence level, the model seems to perform
slightly worse for the non-white population.

Impact of video quality
Since most of the video recordings are collected from participants’
homes, the quality of the videos may vary widely. Several factors,
such as the lighting condition of the recording environment,
quality of the data capturing devices (i.e., webcams and internet
browsers), participants’ cognitive ability and understanding of the
task, surrounding noise (e.g., multiple persons being visible in the
recording frame) can affect the quality of the recorded videos.
Hence, it is essential to analyze how video quality influences
clinical ratings, the performance of the pose estimation model
used in this study, and, eventually, the model performance. When
providing finger-tapping severity ratings for each video, each
expert neurologist identified cases where the video was difficult to
rate due to quality issues or the participant’s inability to follow the
task appropriately. We grouped the videos into two categories:
high-quality videos, which none of the experts had difficulty
rating, and low-quality videos, which at least one expert had
difficulty rating.

Impact on rater agreement. We examined whether the agree-
ment between the expert raters varied depending on the quality
of the videos. For the high-quality videos (n= 385), the measure of
inter-rater reliability, known as the intra-class correlation coeffi-
cient (ICC), was found to be 0.879 (95% confidence interval
[CI]= [0.86, 0.90]). On the other hand, the ICC for the low-quality
videos (n= 104) was 0.806 (95% CI= [0.73, 0.86]). Although this
difference is not statistically significant (at a 95% confidence level)
due to the overlap in the confidence intervals for the two groups,
it suggests that the video quality may have slightly impacted the
agreement among the expert raters. We also ran a Chi-square test
of independence and found no significant association between
finding a majority agreement among the experts and the quality
of the videos at a 95% confidence interval (test-statistic= 0.9965,
p-value= 0.318, degree of freedom= 1). In addition, there were
38 videos (out of 489) where the experts disagreed by at least 2
points. 27 (71%) out of these 38 videos were marked as high-
quality by all experts, whereas only 11 videos (29%) were marked
as low-quality by one or more experts.

Impact on pose-estimation model. Next, we tried to evaluate
whether video quality impacts the performance of the pose
estimation model used in this study (i.e., MediaPipe). For each
frame in the video, MediaPipe provides a “hand presence score”
while estimating the coordinates of the hand key-points. The hand
presence score is a measure of confidence in the model’s ability to
track the hand in the current frame. The score is a number
between 0 and 1, where 0 indicates no confidence and 1 indicates
high confidence. A high hand presence score indicates that the
model is confident in its ability to track the hand. This means that
the landmarks are likely to be accurate and that the pose
estimation is likely to be correct. A low hand presence score
indicates that the model is not confident in its ability to track the
hand. Therefore, to estimate the pose estimation performance on
a video, we used the average hand presence score across all the
frames in the video after dropping the starting and ending frames
that do not contain the hand of interest. The mean hand presence
scores were 0.967 and 0.962, respectively, across the high-quality
(n= 385) and low-quality videos (n= 104). Based on these results,
we did not observe a notable difference in the performance of
MediaPipe hand tracking between the high-quality and low-
quality videos. This finding was supported by statistical analysis
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using a two-sample two-tailed t-test, which yielded a p-value of
0.36 with test statistic, t= 0.91.
Additionally, we manually injected noise to randomly selected

86 “high-quality” (43 videos of right-hand and 43 of left-hand)
videos from our dataset to see how different types of noise impact
the confidence (hand presence scores) of MediaPipe. Specifically,
we applied different levels of blurring by performing a low-pass
filter operation on each frame with two different kernel sizes (3 × 3
(slight blurring) and 9 × 9 (substantial blurring)) and also injected
different levels of Gaussian noise with zero means and two
different standard deviations (25 (low amount of noise), and 40
(high amount of noise)). As a result, each video had five distinct
versions: the original video, slightly blurred, substantially blurred,
low amount of Gaussian noise, and high amount of Gaussian
noise. In general, MediaPipe had lower confidence scores for the
videos with injected noise. For example, the mean confidence
score for the original videos was 0.96 (std= 0.031) while the mean
for the slightly blurred and substantially blurred videos were 0.958
(std= 0.033) and 0.935 (std= 0.08), respectively. Similarly, the
mean scores for the videos with a low amount of added noise and
a high amount of added noise were 0.897 (std= 0.124) and 0.784
(std= 0.170), respectively. The difference in MediaPipe confidence
scores was not significant between the original and slightly
blurred videos. However, the rest of the group-wise differences
were statistically significant as validated by paired sample t-tests
(please see Supplementary Table 5 for associated test statistics).

Impact on model performance. Finally, we also evaluate whether
the model performs poorly for low-quality videos. Specifically, we
evaluate the prediction errors of the model across two groups of
videos (high-quality and low-quality) and run two-sample t-tests
to see whether there is any significant difference in prediction
errors across these two groups. The mean absolute errors of the
model were 0.581 (std= 0.43) and 0.578 (std= 0.506) respectively
across the high and low-quality videos. Therefore, we observed no
significant difference in performance across these two groups
(t= 0.064, p-value= 0.95) based on a two-sample t-test. Also, we
analyzed the cases where the model predictions were off by more
than 1.5 points (resulting in at least 2 points difference when the
continuous predictions are converted into severity classes). Out of
15 such occurrences, 10 videos were marked as high-quality by all
experts and only 5 videos were marked as low-quality by at least
one expert.

DISCUSSION
Here we report three significant contributions. First, we demon-
strate that the finger-tapping task can be reliably assessed by
neurologists from remotely recorded videos. Second, this study
suggests that AI-driven models can perform close to clinicians and
possibly better than non-specialists in assessing the finger-tapping
task. Third, the proposed model is equitable across sex, age, and
PD vs. non-PD subgroups. These offer new opportunities for
utilizing AI to address movement disorders, extending beyond
Parkinson’s disease to encompass other conditions like ataxia and
Huntington’s disease, where finger-tapping provides valuable
insights into the severity of the disease.
Our tool can be expanded to enable longitudinal tracking of

symptom progression to fine-tune the treatment of PD. People
with PD (PwP) often exhibit episodic symptoms, and longitudinal
studies require careful management of variables to ensure
accurate temporal responses to individual doses of medication.
It is best practice to conduct repeated ratings under consistent
conditions, such as at the same time of day, the same duration
after the last medication dose, and with the same rater11.
However, the limited availability of neurological care providers
and mobility constraints of elderly PwP make this challenging. In
the future, we envision extending our platform for other

neurological tasks (e.g., postural and rest tremors, speech, facial
expression, gait, etc.) so that patients can perform an extensive
suite of neurological tasks in their suitable schedule and from the
comfort of their homes. For this use case, our tool is not intended
to replace clinical visits for individuals who have access to them.
Instead, the tool can be used frequently between clinical visits to
track the progression of PD, augment the neurologists’ capability
to analyze the recorded videos with digital biomarkers and fine-
tune the medications. In healthcare settings with an extreme
scarcity of neurologists, the tool can take a more active role by
automatically assessing the symptoms frequently and referring
the patient to a neurologist if necessary.
We introduce several digital biomarkers of PD—objective

features that are interpretable, clinically useful, and significantly
associated with the clinical ratings. For example, the most
significant feature correlated with the finger-tapping severity
score is the interquartile range (IQR) of finger-tapping speed
(Table 2). It measures one’s ability to demonstrate a range of
speeds (measured continuously) while performing finger-tapping
and is negatively correlated with PD severity. As the index finger is
about to touch the thumb finger, one needs to decelerate and
operate at a low speed. Conversely, when the index finger moves
away from the thumb finger after tapping, one needs to
accelerate and operate at high speed. A higher range implies a
higher difference between the maximum and minimum speed,
denoting someone having more control over the variation of
speed and, thus, healthier motor functions. Moreover, the median
and the maximum finger-tapping speed, as well as the median
and the maximum finger-tapping amplitudes have strong
negative correlations with PD severity. Finally, IQR and standard
deviation of finger tapping frequency, as well as entropy, variance,
and IQR of tapping periods, are found to have strong positive
correlations with PD severity, as they all indicate the absence of
regularity in the amplitude and periods. These findings align with
prior clinical studies reporting that individuals with Parkinson’s
have slower and less rhythmic finger tapping than those without
the condition12. These computational features can not only be
used as digital biomarkers to track the symptom progression of
PwP but also explain the model’s predicted severity score (e.g., an
increase in the severity score can be attributed to factors like
reduced tapping speed, smaller amplitude, etc.)
The proposed model exhibits an average prediction error of

0.58, indicating that it frequently predicts a level 1 severity for a
healthy individual who actually has a severity score of 0. As
observed in the confusion matrix, the model misclassifies 63% of
the ground-truth zero severity scores as severity 1. Moreover, it is
less accurate for videos with severity 3 and 4. We achieved an
overall accuracy of 50.92% when utilizing the LightGBM regressor
as a classifier, highlighting the need for further enhancement in
the model. However, it is important to note that the lack of
accuracy is also evident among experts and non-experts. On
average, a pair of experts only concurred on the severity of a
finger-tapping video 51.35% of the time. Additionally, the non-
experts obtained an overall accuracy of 36.03%. This underscores
the challenge of precisely assessing symptoms of Parkinson’s
disease. In clinical settings, although the assessment of motor
signs is important, it alone does not determine a Parkinson’s
disease diagnosis. Clinicians also consider the patient’s health
history, medications, and non-motor symptoms, such as anxiety,
depression, impaired sense of smell, constipation, and changes in
sleep among other factors, to determine a diagnosis. However,
MDS-UPDRS scores are highly suitable for monitoring individuals
already diagnosed with Parkinson’s disease. An increase in the
severity score from the baseline indicates the manifestation of
more Parkinsonian symptoms, while a decrease suggests an
improvement in symptoms. Considering this use case, severity
assessment is typically regarded as a regression problem rather
than a classification problem. Thus, having a strong correlation
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(e.g., Pearson’s correlation coefficient) and low error (e.g., mean
absolute error) with respect to the ground-truth labels are the
most desirable metrics.
When developing tools for analyzing data recorded in home

environments, it is crucial to consider the various types of noise
that can naturally occur in such settings. Home videos may exhibit
background noise, inadequate lighting, blurriness, and other
artifacts. These factors can pose challenges for both doctors and
models in evaluating the videos. In this study, at least one of the
experts expressed discomfort in rating 104 out of 489 videos due
to quality issues. Although the difference was not statistically
significant, there was a slightly lower level of inter-rater
agreement among the experts when it came to low-quality
videos. However, the model’s performance, as indicated by the
prediction error, was similar for both good and poor-quality
videos. It is possible that the video quality remained sufficient for
the pose-estimation model and the feature-extraction framework
employed to automatically assess the severity of the finger-
tapping task. Nevertheless, further analysis indicates that Media-
Pipe (the pose-estimation model used in this study) struggles
when significant external systematic noise is introduced into the
videos. For instance, the confidence of MediaPipe hand-tracking
dropped when a subset of the good-quality videos was
intentionally blurred or when random Gaussian noise was added.
In general, we recommend ensuring a minimum level of video
quality to obtain reliable ground truth and facilitate the use of
more precise tools for video processing.
As we prepare to roll out our AI tool in healthcare settings, we

must prioritize ethical considerations such as data security, user
privacy, and algorithmic bias. As AI platforms become increasingly
integrated into healthcare domains, there is growing emphasis on
protecting against data breaches and crafting appropriate
regulatory frameworks prioritizing patient agency and privacy13.
This ever-evolving landscape will have significant implications for
our future approach. Additionally, algorithmic bias and its risks in
perpetuating healthcare inequalities will present ongoing chal-
lenges14. Many AI algorithms tend to underdiagnose underserved
groups15, and it is critical to evaluate and report the model
performance across age, ethnicity, and sex subgroups. Our
proposed model does not demonstrate detectable bias across
the male and female populations, people with and without PD,
white and non-white populations, and to a particular age group.
Ensuring fairness and equitable performance across diverse
demographics is essential for an AI model to be ethically sound
and applicable in healthcare settings.
The study has some limitations that can be improved in the

future. To begin with, some of the objective features examined in
this study might be influenced by tremors, a significant symptom
of Parkinson’s disease that can frequently obscure signs of
bradykinesia. For instance, accurately identifying individual finger
taps necessitates precise peak detection from the finger-tapping
motion over time. When tremors impact the motion, the signal
can become unstable, posing a challenge in detecting clear and
distinct peaks. Errors in peak detection would consequently
impact the assessment of several features employed in this study,
including finger-tapping period, frequency, and amplitude.
Additionally, it is possible that severe tremors will affect the
performance of pose estimation models. Pose estimation models
operate by tracking the motion of body parts in a video. Tremors
can induce erratic and unpredictable motion of the body parts,
which can impede the model’s ability to track the motion. This can
result in inaccuracies in estimating the pose, ultimately compro-
mising the accuracy of the extracted features. Unfortunately, we
do not have the tremor diagnosis for the participants in this study
and, therefore, could not provide definitive answers to these
concerns. It is worth noting that, due to the jerky and
unpredictable movements caused by tremors, doctors also
encounter difficulties in assessing the speed of an individual’s

motion, rendering the diagnosis of bradykinesia challenging.
Future studies may further investigate the connection between
tremors and bradykinesia.
In addition, the proposed AI-driven model (i.e., LightGBM

regressor) was trained with 489 videos from 250 global
participants. While this dataset is the largest in the literature in
terms of unique individuals, it is still a relatively small sample size
for training models capable of capturing the essence of complex
diseases such as Parkinson’s. Furthermore, it is worth noting that
the dataset utilized in this study exhibits class imbalance. More
specifically, there is a scarcity of samples for severity classes 3 and
4. While the number of videos for severity classes 0, 1, and 2
amounted to 108, 181, and 141, respectively, there were only 54
and 5 videos available for severity classes 3 and 4. This class
imbalance may have contributed to the model’s inability to
predict the most severe class (i.e., severity 4) correctly. Also, there
is room for improvement in developing a fair and equitable
model. Although not statistically significant, the proposed model
is slightly more inaccurate for the male (vs. female) and non-white
(vs. white) populations. In our dataset, videos of male subjects
had significantly higher severity (n= 267, mean severity= 1.43,
std= 0.98) than female subjects (n= 222, mean severity= 1.19,
std= 1.94), as indicated by p-value of 0.003 obtained by
one-tailed t-test. As we had less data for modeling the higher
severity classes, this could have contributed to a higher average
error for male individuals compared to females. Also, higher errors
for non-white populations could be due to having less data to
represent them. Notably, 92% of participants in this study self-
reported as white. Diversifying our training data and gathering
feedback from critical stakeholders (especially from traditionally
underrepresented and underserved communities) will be impor-
tant first steps for us to take toward building fair, high-
performance algorithms in the future. To that end, we will
diversify our dataset to be representative of the general
population. Individuals with non-white ethnicity are typically
underrepresented in clinical research16. Thus, emphasizing the
recruitment of these populations through targeted outreach will
be essential, especially considering the risks that homogeneous
training data can pose in furthering healthcare inequalities17. In
the future, we plan to improve our model’s performance by
building (i) a larger dataset with a better balance in severity scores
and (ii) a gatekeeper to improve data quality. Additional data will
be essential in building more powerful models with potentially
better performance. Furthermore, we can improve our data quality
and model performance by developing “quality control” algo-
rithms to provide users with real-time feedback on capturing high-
quality videos: such as adjusting their positioning relative to the
webcam or moving to areas with better lighting. Developing user-
friendly features to strengthen data collection and ensure
minimum video quality will be crucial for collecting videos
remotely without direct supervision.
Finally, it is worth noting that the symptoms of Parkinson’s

disease can vary depending on whether an individual is in the ON-
state (under the effect of PD medication) or in the OFF-state (not
under the effect of PD medication). It would be intriguing to
investigate whether the model can effectively detect differences
in symptom severity between participants who are ON or OFF PD
medication in future studies.

METHODS
Data sources
Participants’ data were collected through a publicly accessible
web-based tool (https://parktest.net/). This tool allows individuals
to contribute data from the comfort of their homes, provided they
have a computer browser, internet connection, webcam, and
microphone. In addition to the finger-tapping task, the tool also
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gathers self-reported demographic information such as age, sex,
ethnicity (i.e., white, Asian, Black or African American, American
Indian or Alaska Native, others) and whether the participant has
been diagnosed with Parkinson’s disease (PD) or not. Moreover,
the tool records other standard neurological tasks involving
speech, facial expressions, and motor functions, which can help to
extend this study in the future.
We collected data from 250 global participants who recorded

themselves completing the finger-tapping task in front of a
computer webcam. Data was collected primarily at participants’
homes; however, a group of individuals (48) completed the task in
a clinic using the same web-based tool. Study coordinators were
available for the latter group if the participants needed help. The
demographic characteristics of the study participants are provided
in Table 1.

Clinical ratings
The finger-tapping task videos were evaluated by a team of five
raters, including two non-specialists and three expert neurologists.
The expert neurologists are all associate or full professors in the
Department of Neurology at a reputable institution in the United
States, possess vast experience in PD-related clinical studies, and
actively consult PD patients. Both of the non-specialists are MDS-
UPDRS certified independent raters. One of the non-specialists
holds a non-U.S. bachelor’s degree in medicine (MBBS) and has
experience conducting PD clinical studies. The other non-specialist
is a second-year neurology resident with 10 years of experience in
clinical research related to movement disorders. The first non-
specialist does not consult PD patients and the second non-
specialist takes care of <20 PD patients per year.
The raters watched the recorded videos of each participant

performing the finger-tapping task and rated the severity score
for each hand following the MDS-UPDRS guideline. The
MDS-UPDRS guideline is publicly available at https://
www.movementdisorders.org/MDS-Files1/Resources/PDFs/MDS-
UPDRS.pdf. The finger-tapping task is discussed in Part III, Section
3.4. The severity rating is an integer ranging from 0 to 4
representing normal (0), slight (1), mild (2), moderate (3), and
severe (4) symptom severity. The rating instructions emphasize
focusing on speed, amplitude, hesitations, and decrementing
amplitude while rating the task. In addition to providing the
ratings, the raters could also mark videos where the task was not
properly performed or when a video was difficult to rate. We
excluded the difficult-to-rate videos marked by any of the experts
when analyzing the performance of the raters.
To compute the ground-truth severity scores, we considered

only the ratings the three expert neurologists provided. If at least
two experts agreed on the severity rating for each recorded video,
this was recorded as the ground truth. If the experts had no
consensus, their average rating rounded to the nearest integer
was considered the ground truth. The ratings from the non-
specialists were used solely to compare the machine-learning
model’s performance.

Feature extraction
We developed a set of features by analyzing the movements of
several key points of the hand. The feature extraction process is
comprised of five stages: (i) distinguishing left and right-hand
finger-tapping from the recorded video, (ii) locating the target
hand for continuous tracking, (iii) quantifying finger-tapping
movements by extracting key points on the hand, (iv) reducing
noise, and (v) computing features that align with established
clinical guidelines, such as MDS-UPDRS. We implemented these
stages using Python. Supplementary Note 1 lists the exact version
for each Python package used in this study.
The finger-tapping task is performed for both hands, one hand

at a time. However, to rate each hand independently, we divided

the task video into two separate videos, one featuring the right
hand and the other featuring the left hand. We manually reviewed
each video and marked the transition from one hand to the other.
The data collection framework will be designed to record each
hand separately to avoid manual intervention in the future. After
hand separation, the video V (of the hand-separated finger-
tapping task) and the hand category (i.e., left or right) are provided
as inputs to the feature extraction pipeline. If the hand category is
specified as left, the analysis focuses solely on the movements of
the left hand, and the same applies to the right-hand category.
After separating the left and right-hand finger-tapping videos,

we applied MediaPipe Hands (https://google.github.io/mediapipe/
solutions/hands.html) to detect the coordinates of 21 key points
on each hand. MediaPipe is an open-source project developed by
GoogleAI that provides a public API of a highly accurate state-of-
the-art model for hand pose estimation. In addition, the hand
pose estimation model is very fast, easy to integrate into a
machine learning framework, and supports various platforms,
including Android, iOS, and desktop computers. Furthermore,
GoogleAI consistently updates the pose estimation models and
seamlessly integrates these updates into the public API. We
selected MediaPipe over other pose estimation platforms due to
these compelling reasons.
Although each video contained finger-tapping of either the left

or right hand (after hand separation), both hands might remain
visible in the recording frame. Therefore, we needed to identify
the target hand out of multiple visible hands before extracting key
points. Initially, we processed the finger-tapping task video V in a
frame-by-frame manner using MediaPipe. For each frame Vi, we
first tried to locate the specified hand category h. Using the
multi_handedness output from MediaPipe, we can identify
how many different hands MediaPipe has detected and the
handedness category, and the confidence score of detection for
each detected hand. To identify the detected hand(s) that match
the specified hand category h, we used the following heuristics:
hands_found← [ ]
for all j in range(len(multi_handedness)) do
if (multi_handedness[j].classification[0].label= h) & (multi_
handedness[j].classification[0].score > 0.9) then
hands_found. append(j)
end if

end for
We identified three possible scenarios:

● MediaPipe did not detect any hand with matching hand
category: In this case, we simply assigned the frame to have
missing hand.

● MediaPipe detected a single hand matching the hand category:
We considered this to be the hand we will analyze.

● Mediapipe detected multiple hands matching the hand category:
When multiple persons are visible in the frame, MediaPipe can
detect multiple right hands or multiple left hands. In such
situations, we made an assumption that the subject perform-
ing the task will have a larger hand compared to the other
individual(s) in the background, as the study subject is likely to
be the closest to the camera. To identify the largest hand, we
compared the Euclidean distance between the coordinates of
the wrist (landmark[0]) and the thumb-tip (land-
mark[4]) of the detected hands. The hand with the greatest
distance was selected for further analysis.

After we identified the target hand from the MediaPipe
detected hands for frame Vi, we extracted the x and y coordinates
of four landmarks (i.e., hand key points): center of wrist joint
(WRIST, landmark[0]), thumb carpometacarpal joint
(THUMB_CMC, landmark[1]), tip of the thumb (THUMB_TIP,
landmark[4]), and tip of the index finger (INDEX_FINGER_-
TIP, landmark[8]). These coordinates were used to track the
finger-tapping angle and movement of the wrist over time.
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Instead of using Euclidean distance between the thumb-tip and
index finger-tip to measure the amplitude, speed, and other
metrics to quantify finger-tapping movements, we used the angle
incident by three key points: THUMB_TIP, WRIST, and INDEX_-
FINGER_TIP. This helped us to deal with participants sitting at a
variable distance from the camera since the angle is invariant to
the camera distance. We computed the angle for each frame of
the recorded video (i.e., if a video was recorded at 30 frames/s, we
computed the angle 30 times per second). This helped us assess
the speed and acceleration of the fingers in a continuous manner.
The computed finger-tapping angles are plotted as a time-series

signal in Fig. 5 (left). Negative values of the angle are indicative of
a missing hand in the captured frame. For example, at the
beginning or at the end of the recording, the hand might not be
visible in the recording frame, as the participant needs to properly
position their hand. We detected missing hands using the
handedness outputs from MediaPipe, which include information
about the left/right hand and hand presence confidence score. In
particular, if the target hand (left/right) is not recognized as a
handedness category or if the hand presence confidence score is
less than 0.90, we labeled the frame as having a missing hand. In

these cases, we assign a finger-tapping angle of −1.0. However,
MediaPipe can also inaccurately miss the hand in many frames,
resulting in a negative value for the angle. To address this issue,
we implemented a strategy to interpolate missing angle values
when the majority of neighboring frames have non-negative
values. Specifically, we looked at the five frames before and after
the missing value. If the majority had non-negative angles, we
interpolated the value using a polynomial fit on the entire signal.
Then, we found the largest consecutive segment of frames where
the hand is visible (i.e., the finger-tapping angle was non-negative)
in the signal and remove the frames before and after that. This
helps us to remove the pre and post-task segments where the
participants were not tapping their fingers and ensure that the
analysis is focused on the relevant segment of the signal. Figure 5
(middle) shows how the raw, noisy signals were converted to
cleaner signals after performing this step.
The participants need to adjust the positioning of their hands

before starting to tap their fingers, and they also need to move
their hands after completing the task, which introduces further
noise to the signal. Specifically, it can impact the first and last tap
they undergo. As the task instructs the participants to tap their

Se
ve

rit
y:

 1
Se

ve
rit

y:
 2

Se
ve

rit
y:

 3

Fig. 5 Data pre-processing. Finger-tapping angles incident by three hand key points (thumb-tip, wrist, index finger-tip) plotted as a time
series. Figures on the left show the noisy raw signals directly extracted using MediaPipe. After the noise reduction step, we identified peak
angles (red dots) using a custom peak detection algorithm. Finally, trimming the signal by removing the first and last tap yields the cleanest
signal used for analysis, as shown on the right. The top figures depict a person with severe tapping difficulty (severity: 3), resulting in low and
irregular amplitudes. The central figures show a person with moderate tapping ability (severity: 2), with slow and interrupted tapping and
irregular amplitudes. Finally, the bottom figures show a person with good rhythmic tapping ability, albeit with a slower tapping speed
(severity: 1).
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fingers 10 times, we decided to remove the first and last tap,
hoping to obtain the cleanest signal to analyze. To accomplish
this, we ran a custom peak detection algorithm to find the peaks
of the finger-tapping angle, and we removed the portion of the
signal before the second peak and after the second-last peak. The
peak detection algorithm utilizes some of the unique properties of
the task. For example, a peak must be followed by a bottom (i.e.,
low value of finger-tapping angle) as the tapping is repetitive, the
duration between two subsequent taps cannot be too small (i.e.,
determined by the fastest finger-tapping speed recorded), and the
peaks must be bigger than the smallest 25 percentile values of the
signal. Figure 5 (right) demonstrates the effectiveness of this step,
as it helps to obtain a clean signal that can be used to develop
objective measures of the finger-tapping task.
We used the WRIST, THUMB_TIP, and INDEX_FINGER_TIP

coordinates to compute the finger-tapping angle Xi for the ith
frame as shown in Fig. 6. Specifically, for this frame, we first
identified two vectors WTi

��!
and WIi

�!
, which represent the lines

connecting the wrist to the thumb-tip and the wrist to the index
finger-tip, respectively. The finger-tapping angle Xi was then
computed using the following formula:

Xi ¼ cos�1 WTi
��! � WI

�!
i

jWTi
��!j ´ jWIi

�!j

 !

´ 180� (1)

In this context, the symbol ⋅ represents the dot product
operation performed on two vectors, while ∣. ∣ denotes l2 norm.
The computed finger-tapping angles were then regarded as a
time-series (X1, X2,⋯ , Xn where n is the number of frames in the
video), which was further processed to reduce noise (as
mentioned above.) Let tframe be the average duration of one
frame for the video being analyzed (computed by dividing the
entire video duration by the number of frames in the video). From
the entire time-series, we computed the following metrics for each
frame Vi (where i > 1):

● Finger-tapping speed is a continuous measurement of an
individual’s tapping speed. For each recorded frame Vi, we
quantify speed sVi as the change in the finger-tapping angle
compared to the previous frame and divide this by the
duration of one frame (so the speed is measured in degree/

second unit):

sVi ¼
jXi � Xi�1j
tframe

(2)

The average frame rate of the recorded videos was 30, meaning
that we can measure an individual’s tapping speed 30 times a
second.
● Acceleration is also a continuous measurement, which is the

derivative of finger-tapping speed. Specifically, for each frame
Vi, we measure the change in speed compared to the previous
frame to quantify acceleration aVi in degree/second-square
unit:

aVi ¼
jsVi � sVi�1 j
tframe

(3)

In order to obtain additional important metrics, we utilized a
custom peak detection algorithm to identify the peaks in the
finger-tapping angles throughout the duration of the video. Let us
denote the frame numbers at which the peaks occur as
P1, P2,⋯ , Pk, where k represents the total number of peaks in
that specific video. Consequently, the corresponding peak values
of the finger-tapping angles can be represented as
XP1 ; XP2 ; � � � ; XPk . Due to the periodic and repetitive nature of
the finger-tapping task, each peak can be used to separate one
tap from the others. Utilizing these peak values, we proceeded to
calculate the following metrics at each peak Pi (where i > 1):

● Finger-tapping period is measured as the time (in seconds) it
took for a participant to complete a tap. We approximate the
period TPi at the ith peak as

TPi ¼ ðPi � Pi�1Þ ´ tframe (4)

● Finger-tapping frequency is the inverse of the finger-tapping
period, measuring the number of taps completed per second.
Thus, the frequency f Pi at the ith peak is calculated as:

f Pi ¼
1
TPi

(5)

● Amplitude is defined as the maximum angle (in degree) made
by the thumb-tip, wrist, and index finger-tip while completing
a tap. To simplify, finger-tapping amplitudes (A) are the peak
values of finger-tapping angles computed at each peak. Thus,
APi ¼ XPi .

To track wrist movement throughout the duration of the task,
we recorded Wi= (Wi. x,Wi. y), the x and y coordinates of the
WRIST for each frame Vi. Note that, to account for the variable
distance of the hand from the camera, the coordinates were
normalized by the Euclidean distance between the WRIST and
THUMB_CMC. For the ith frame (i > 1), we computed three metrics
for capturing the wrist movement:

● Absolute wrist movement along X-axis,

ΔWXi ¼ jWi:x �Wi�1:xj (6)

● Absolute wrist movement along Y-axis,

ΔWYi ¼ jWi :y �Wi�1:yj (7)

● Cartesian distance of wrist movement,

ΔWi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðWi:x �Wi�1:xÞ2 þ ðWi:y �Wi�1:yÞ2
q

(8)

INDEX_FINGER_TIP

WRIST

THUMB_TIP

X

Fig. 6 Hand key points extracted by MediaPipe. All the extracted
key-points are displayed as red dots. The three key-points WRIST,
THUMB_TIP, and INDEX_FINGER_TIP were used to compute the
finger-tapping angle X. Authors have obtained consent to publish
the images of the participant.
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Please note that while speed, acceleration, and wrist movement
metrics were computed for each frame, the other metrics were
computed for each detected peak. For each of the features above,
we measured the median, inter-quartile range (IQR), mean,
minimum, maximum, standard deviation, and entropy (a measure
of uncertainty or randomness in a signal, calculated using
Shannon’s formula), and used them as separate features.
Additionally, we measured the following aggregate features

based on the entire signal to capture the rhythmic aspects of the
finger-tapping task:

● Aperiodicity: Periodicity is a concept borrowed from signal
processing that refers to the presence of a repeating pattern or
cycle in a signal. For example, a simple sinusoidal signal (e.g.,
f(t)= sin(t)) will have higher periodicity compared to a signal
that is a combination of several sinusoidal signals (e.g.,
f(t)= sin(t)+ sin(2t)). Aperiodicity measures the absence of
periodicity (i.e., the absence of repeating patterns). To measure
aperiodicity, signals are transformed into the frequency domain
using fast Fourier transformation (FFT). The resulting frequency
distribution can be used to calculate the normalized power
density distribution, which describes the energy present at
each frequency. The entropy of the power density distribution
is then computed to measure the degree of aperiodicity in the
signal. A higher entropy value indicates greater uncertainty in
the frequency distribution, which corresponds to a more
aperiodic signal. A similar measure was found to be effective in
measuring the symptoms of Alzheimer’s disease18.

● Number of interruptions: Interruption is defined as the minimal
movement of the fingers for an extended duration. We
calculated a distribution of continuous finger-tapping speeds
across the study population. Our analysis revealed that over 95
percent of the tapping speeds exceeded 50°/s. As a result, any
instance where an individual’s finger-tapping speed was less
than 50°/s for at least 10ms was marked as an interruption. The
total number of interruptions present in the recorded video
was then computed using this method.

● Number of freezing: In our study, we considered freezing as a
prolonged break in movement. Specifically, any instance where
an individual recorded <50°/s for over 20ms was identified as a
freezing event, and we counted the total number of such events.

● Longest freezing duration: We recorded the duration of each
freezing event and calculated the longest duration among them.

● Tapping period linearity:We recorded the tapping period for each
tap and evaluated the possibility of fitting all tapping periods
using a linear regression model based on their degree of fitness
(R2). Additionally, we determined the slope of the fitted line. The
underlying idea was that if the tapping periods were uniform or
comparable, a straight line with slope= 0 would adequately fit
most periods. Conversely, a straight line would not be an
appropriate fit if the periods varied significantly.

● Complexity of fitting periods: The complexity of fitting finger-
tapping periods can provide insights into the variability of these
periods. To measure this complexity, we used regression analysis
and increased the degree of the polynomial from linear (degree
1) up to 10. We recorded the minimum polynomial degree
required to reasonably fit the tapping periods (i.e., R2 ≥ 0.9).

● Decrement of amplitude: Decrement of amplitude is one of the
key symptoms of Parkinsonism. We measured the finger-tapping
amplitude for each tap and quantified how the amplitude at the
end differed from the mean amplitude and amplitude at the
beginning. Additionally, we calculate the slope of the linear
regression fit to capture the overall change in amplitude from
start to end.

The abovementioned measurements and some of their
statistical aggregates result in 65 features used to analyze the
recorded finger-tapping videos. We performed a cross-correlation
analysis among the features to identify the highly correlated pairs

(i.e., Pearson’s correlation coefficient, r > 0.85) and dropped one
feature from each pair. This helps to remove redundant features
and enables learning the relationship between the features and
the ground truth severity scores using simple models. This is
important, as simple models tend not to over-fit the training data
and are more generalizable than complex models (commonly
known as Occam’s razor19). After this step, the number of features
was reduced to 53.
For each of the 53 features, we perform a statistical correlation

test to identify the features significantly correlated with the
ground-truth severity score. Specifically, for each feature, we take
the feature values for all the recorded videos in our dataset and
the associated ground-truth severity scores obtained by the
majority agreement of three expert neurologists. We measure the
Pearson’s correlation coefficient (r) between the feature values
and severity scores and test the significance level of that
correlation (i.e., p-value). We found 18 features to be significantly
correlated (at a significance level, α= 0.01). The significant
features include finger-tapping speed (inter-quartile range,
median, maximum, minimum), acceleration (minimum), amplitude
(median, maximum), frequency (inter-quartile range, standard
deviation), period (entropy, inter-quartile range, minimum),
number of interruptions, number of freezing, longest freezing
duration, aperiodicity, the complexity of fitting periods, and wrist
movement (minimum Cartesian distance). Table 2 reports the
correlation’s direction, strength, and statistical significance level
for the most correlated ten features. It is important to acknowl-
edge that certain features may exhibit a strong non-linear
correlation that is not adequately captured by Pearson’s correla-
tion coefficient. Due to this reason, we retained all 53 features as
candidates for training machine learning models, even if some of
them did not exhibit significant correlations.

Feature processing, model training, evaluation, and
explanation
With a small dataset, there is an increased risk of overfitting, where
the model learns the noise and specific patterns of the training
data rather than generalizing well to unseen data. Feature
selection helps mitigate this risk by reducing the complexity of
the model and focusing on the most informative features, which
reduces the likelihood of overfitting. We used the Boosted
Recursive Feature Elimination (BoostRFE) method implemented
in the shap-hypertune Python package with the LightGBM base
model to reduce the number of features fed to the machine
learning model (Supplementary Table 3 contains all the feature
selection approaches we tried and the corresponding model
performance measures). BoostRFE combines the concepts of
boosting and recursive feature elimination. It identifies and ranks
the most informative features in a dataset. After selecting the
feature set, we scaled all the features based on training data to
bring them onto the same scale. We used the “number of top
features” to be selected by the BoostRFE method and the scaling
method as hyper-parameters, and the best model picked the top-
22 features out of 53 candidate features and StandardScaler
(implemented in Python sklearn package) as the scaling method.
To model our dataset, we applied a standard set of regressor

models (i.e., XGBoost, LightGBM, support vector regression (SVR),
AdaBoost, and RandomForest), as well as shallow neural networks
(with 1 and 2 trainable layers). We ran an extensive hyper-
parameter search for all of these models using the Weights and
Biases tool (https://wandb.ai) and found LightGBM9 to be the best-
performing model (Table 3). LightGBM is a gradient-boosting
framework like XGBoost20 that works by iteratively building a
predictive model using an ensemble of decision trees. It uses a
leaf-wise tree growth strategy where each tree is grown by
splitting the leaf that offers the most significant reduction in the
loss function. LightGBM is a popular choice in modeling structured
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data due to its fast training speed, low memory usage, and high
performance. To run the hyper-parameter search for the LightGBM
regressor, we experimented with different learning rates, max-
imum depth of the tree, number of estimators to use, etc. The list
of all hyper-parameters, their search space, and the corresponding
value for the best model is reported in Supplementary Table 4.
The dataset we analyzed exhibited class imbalance. Specifically,

we had 108, 181, and 141 videos with severity scores of 0, 1, and 2,
respectively, while the number of videos with severity scores of 3
and 4 was significantly lower, with only 54 and 5 videos,
respectively. To address this issue, we experimented with a
technique called Synthetic Minority Over-sampling Technique
(SMOTE) proposed by Chawla et al.21). SMOTE generates synthetic
data samples for the minority classes by selecting an instance
from each minority class and choosing one of its k-nearest
neighbors (where k is a user-defined parameter). It then creates a
synthetic instance by interpolating between the selected instance
and the chosen neighbor. However, the model performance
degraded (i.e., Pearson’s correlation coefficient decreased from
0.6563 to 0.6422, and the mean absolute error increased from
0.5802 to 0.5807) after integrating SMOTE. Therefore, we ended up
not using minority oversampling.
To assess the model’s performance, we employed leave-one-

patient-out cross-validation (LOPO-CV) technique. LOPO-CV
involves partitioning the dataset in a manner where each patient’s
data is treated as a distinct validation set, while the remaining
data is utilized for training the model. This process entails multiple
iterations, with each iteration excluding the data samples of a
specific patient (both left and right-hand videos in our case) as the
test set, while the machine learning model is trained on the
remaining data. LOPO-CV ensures that the model’s performance is
evaluated on unseen patients, resembling real-world scenarios
where the model encounters new patients during deployment.
This approach is particularly well-suited for machine learning
applications in the healthcare domain.
We used seven metrics to evaluate the performance of several

regression models attempted to measure the severity of the
finger-tapping task: mean absolute error (MAE), mean squared
error (MSE), classification accuracy, Kendall rank correlation
coefficient (Kendall’s τ), mean absolute percentage error (MAPE),
Pearson’s correlation coefficient (PCC), and Spearman’s rank
correlation coefficient (Spearman’s ρ). MAE is a metric used to
measure the average magnitude of the errors in a set of
predictions without considering their direction. It is calculated
by taking the absolute differences between the predicted and
actual values and then averaging those differences. The smaller
the MAE, the better the model is performing. MSE is also a
measure of the model’s error, however, it penalizes the bigger
errors more as the errors are squared. Instead of capturing errors
on an absolute scale, MAPE measures errors on a relative scale. For

example, making a one-point error when the ground-truth value is
4 will be considered a 25% error using MAPE. Both Kendall’s τ and
Spearman’s ρ are popularly used in statistics to measure the
ordinal association between two measured quantities. PCC
measures the strength and direction of the relationship between
two variables and ranges from −1 to +1. A correlation of −1
indicates a perfect negative relationship, a correlation of +1
indicates a perfect positive relationship, and 0 indicates no
relationship between the variables. Finally, accuracy captures the
percentage of time the model is absolutely correct (when the
regression values are converted to five severity classes). Note that,
unlike the other metrics, accuracy does not distinguish between
making a one-point error and larger errors, and thus it is not
commonly used in regression tasks. In general, these broader sets
of metrics provide a more detailed and diverse picture of the
model performance.
To explain the model’s performance, we used SHapley Additive

exPlanations (SHAP). SHAP is a tool used for explaining the output
of any supervised machine learning model10. It is based on
Shapley values from cooperative game theory, which allows us to
assign an explanatory value to each feature in the input data. The
main idea behind SHAP is to assign a contribution score to each
feature that represents its impact on the model’s output. These
contribution scores are calculated by considering each feature’s
value in relation to all possible combinations of features in the
input data. By doing this, SHAP can provide a detailed and
intuitive explanation of why a particular model made a certain
decision. This makes it easier for human decision-makers to trust
and interpret the output of a machine-learning model.

Use of large language models
ChatGPT (https://chat.openai.com/chat)—a large language model
developed by OpenAI (https://openai.com/) that can understand
natural language prompts and generate text—was used to edit
some parts of the manuscript (i.e., suggest improvements to the
language, grammar, and style). All suggested edits by ChatGPT
were further verified and finally integrated into the manuscript by
an author. Please note that ChatGPT was used only to suggest
edits to existing text, and we did not use it to generate any new
content for the manuscript.

Ethics
The study was approved by the Institutional Review Board (IRB) of
the University of Rochester, and the experiments were carried out
following the approved study protocol. We do not have written
consent from the participant as the study was primarily
administered remotely. However, participants provided informed
consent electronically for the data used for analysis and photos
presented in the figures.

Table 3. Performance of different regressor models we tested.

Model MAE MSE Accuracy (%) Kendall’s τ MAPE (%) PCC Spearman’s ρ

SVR 0.5861 0.5586 51.94 0.5044 32.14 0.6388 0.6329

Random forest regressor 0.5920 0.5482 49.28 0.5116 33.5 0.6518 0.6389

AdaBoost regressor 0.5926 0.5499 45.6 0.5038 33.75 0.6219 0.6317

XGBoost regressor 0.5904 0.5553 51.33 0.4989 32.57 0.6417 0.6282

LightGBM regressor 0.5802 0.5364 50.92 0.5147 32.01 0.6563 0.6429

Shallow neural network-I (one trainable layer) 0.6154 0.6007 46.83 0.4810 33.9 0.6097 0.6100

Shallow neural network-II (two trainable layers) 0.6069 0.6162 51.33 0.4813 32.42 0.6004 0.6044

Performance was reported based on leave-one-patient-out cross-validation. For each performance metric, the best value is highlighted in bold text. Some of
the metrics are abbreviated for the simplicity of presentation.
MAE mean absolute error (points), MSE mean squared error (points), MAPE mean absolute percentage error (%), PCC Pearson’s correlation coefficient.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The recorded videos were collected using a web-based tool. The tool is publicly
accessible at https://parktest.net. Unfortunately, we are unable to share the raw
videos due to the Health Insurance Portability and Accountability Act (HIPAA)
compliance. However, the extracted features and clinical ratings are publicly
available: https://github.com/ROC-HCI/finger-tapping-severity. The features are pro-
vided in a structured format that can be easily integrated with existing machine-
learning workflows.

CODE AVAILABILITY
The codes for video processing and feature extraction, as well as for model training,
are publicly available: https://github.com/ROC-HCI/finger-tapping-severity.
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