Codechella: Multi-User Program Visualizations for
Real-Time Tutoring and Collaborative Learning

Philip J. Guo, Jeffery White, Renan Zanelatto
Department of Computer Science
University of Rochester
Rochester, NY 14627
pg@cs.rochester.edu, {jwhite37,rzanelat} @ur.rochester.edu

Abstract—An effective way to learn computer programming
is to sit side-by-side in front of the same computer with a tutor or
peer, write code together, and then discuss what happens as the
code executes. To bring this kind of in-person interaction to an
online setting, we have developed Codechella, a multi-user Web-
based program visualization system that enables multiple people
to collaboratively write code together, explore an automatically-
generated visualization of its execution state using multiple mouse
cursors, and chat via an embedded text box. In nine months of live
deployment on an educational website — www.pythontutor.com —
people from 296 cities across 40 countries participated in 299
Codechella sessions for both tutoring and collaborative learning.
57% of sessions connected participants from different cities,
and 12% from different countries. Participants actively engaged
with the program visualizations while chatting, showed affective
exchanges such as encouragement and banter, and indicated
signs of learning at the lower three levels of Bloom’s taxonomy:
remembering, understanding, and applying knowledge.

Keywords—program visualization, collaborative visualization,
CS education

I. INTRODUCTION

Despite the recent proliferation of free online re-
sources for learning computer programming such as MOOCs,
Codecademy [1], and Khan Academy CS [2], decades of
computing education research has shown that programming is
incredibly hard to learn alone [3]. Learners face fundamental
technical challenges such as developing mental models of
invisible execution state [4] as well as motivational challenges
such as wanting to give up prematurely because they feel like
they are somehow “not cut out for coding.” [5] Two effective
ways to overcome such challenges include one-on-one tutoring
from an expert [6] and learning collaboratively with peers [7].

In a face-to-face setting, people often teach and learn
programming by sitting in front of a single computer, writing
code together (i.e., pair programming), running the code, and
verbally discussing what they see on-screen [§8]. Since internal
execution state is invisible, people also draw program visual-
izations on paper or on the whiteboard to hone their mental
models. These visualizations include elements such as stack
frames, variables, pointers, and data structures. Researchers
have developed many tools to automatically visualize code
execution state [9]. They found that an effective use for
such tools is to augment in-person tutoring or peer learning
sessions so that people can falk about dynamic properties of
execution state in addition to static properties of code [8].
Such high-fidelity, face-to-face interactions are hard to surpass.

Frames Objects

Global frame list
«— >0 |!

x 1
i1

Curious Cat

Curious Cat & You

Curious Cat
@ hi, how can i help?

me
i think this pointer should point to

the next element, but i can't get my
code to do the right thing

ur visualization. To report a bug, paste the link al
ygbovine.net

Fig. 1. Codechella is a Web-based system that enables two or more people
to collaboratively write code together, explore a detailed visualization of its
execution state, and chat via text. All participants within a session see a real-
time view of one another’s mouse cursors as colored hand icons (e.g., the red
hand for the user named “Curious Cat”) and mouse clicks as bubbles.

However, many people around the world — especially those
taking MOOC:s or using other free online resources — do not
have access to tutors or peers to help them learn in person, so
they are missing out on this valuable pedagogical interaction.

We hypothesize that we can effectively bring this kind
of in-person interaction to an online setting by adding real-
time synchronized shared sessions to automatically-generated
program visualizations. To explore this idea, we developed a
prototype called Codechella. Figures 1 and 2 show its features:

e Two or more participants join a Codechella session by
visiting a unique URL in each of their Web browsers.

e Participants collaboratively write code, run it, and
explore a step-by-step visualization of its execution
state. All participants see a real-time synchronized
view of the code and visualization, as though they
are looking at the same screen.

e Participants also see one another’s mouse cursors as
colored hand icons and mouse clicks as visual bubbles.

e Participants chat about the code and visualizations
within an embedded textual chat window.

There are now dozens of program visualization tools for
education, but they are all single-user applications [9]. And
general-purpose chat applications such as Google Chat or
Skype are not integrated into coding or visualization environ-
ments. To our knowledge, Codechella is the first multi-user
program visualization system, which combines real-time syn-
chronized visualizations with embedded chat to support online
tutoring and collaborative learning of computer programming.

We implemented Codechella as a component within Online
Python Tutor [10], a popular Web-based program visual-
ization tool (pythontutor.com). Our findings from deploying
Codechella for nine months on that website show that people
voluntarily used it for both tutoring and collaborative learn-
ing in a naturalistic online setting. Specifically, people from
296 cities across 40 countries participated in 299 Codechella
sessions. 57% of sessions involved participants from different
cities, and 12% from different countries, which shows that
Codechella connected people who could otherwise not meet
up to work together face-to-face. 69% of logged actions were
interactions with the visualization, while 31% were chats,
which indicates that participants took advantage of the program
visualization features. Participants showed affective exchanges
such as encouragement and banter, and indicated signs of
learning at the lower three levels of Bloom’s taxonomy [11]:
remembering, understanding, and applying knowledge.

Codechella’s Web-based nature allows it to easily integrate
into online educational resources such as MOOCs, digital
textbooks, discussion forums, and Q&A sites. It is hard to
surpass the fidelity of face-to-face interactions, but Codechella
strives to bring some of the benefits of face-to-face learning
to those who cannot meet up in-person.

This paper makes three contributions:

e The novel idea of creating a multi-user program
visualization system for CS education by combining
real-time synchronized visualizations with embedded
chat, which enables multiple remote participants to
talk about the dynamic execution state of code.

e The design and implementation of Codechella, a pro-
totype Web-based system that implements this idea.

e A case study of 299 sessions during a nine-month-
long deployment, which shows high engagement with
visualizations and chat in a naturalistic online setting.

II. RELATED WORK

Limitations of online education: One common criticism
of online educational resources such as MOOCs is that they
mostly serve self-directed autodidacts: people who already
know how to learn well by themselves [12]. For instance,
many people who successfully complete MOOCs are highly-
educated professionals with graduate-level degrees in technical
fields [13], [14]. Critics argue that a key missing ingredient is
human guidance to sustain motivation and engagement for less
independent learners [15]. Discussion forums serve that role
in principle, but in practice are dominated by a minority of
vocal elite participants, can feel unwelcoming or too public
for novices, and lack real-time interactivity [14], [16], [17].
In contrast, Codechella aims to facilitate private, synchronous
human-to-human interactions in online educational settings.

Tutoring and collaborative learning: As opposed to the
impersonal nature of online educational resources, one-on-one
human tutoring is a highly personal and effective way to learn.
It is more effective than group-based instruction [18], self-
directed learning [15], and computer-based tutoring [6]. Also,
collaborative learning can motivate people to learn better than
they would alone [7]. Although it is hard to emulate the fidelity
of face-to-face interactions, several studies have shown that
tutoring and collaborative learning sessions held using text-
only chat led to similar learning gains as those using face-
to-face interactions [19], [20]. These findings suggest that
Codechella’s text-based chat interface can potentially bring
these personal forms of pedagogy to an online setting.

Collaborative learning interfaces: Codechella’s design is
inspired by Web-based interfaces for collaborative learning.
The most relevant asynchronous interfaces include anchored
discussion forums [21], [22] and the NB system for collabo-
rative PDF annotations [23]. The most relevant synchronous
interfaces include Talkabout [24], [25] and MOOCchat [26],
[27], which coordinate structured small-group discussions in
MOOCs over video and text chat, respectively. In addition, Co-
etzee et al. integrated asynchronous and synchronous interfaces
by combining forums with real-time text chat in MOOCs [28].
These chat systems are all general-purpose and not specialized
for a particular domain of learning. In contrast, Codechella
focuses solely on computer programming by integrating chat
with automatically-generated program visualizations.

Program visualization tools: One fundamental challenge
in learning programming is developing a viable mental model
of code execution [4], [29]. To help students construct mental
models, instructors draw diagrams of execution state on the
board or in PowerPoint slides [30]. Over the past four decades,
computing education researchers have created many program
visualization tools to automate this drawing procedure. Sorva
et al. provide a comprehensive survey of 44 such tools from
1979 to 2013, which he calls “generic program visualization
systems.” [9] These tools all allow the user to write code
in a language such as BASIC, Pascal, C++, Java, or Python,
run their code, and then step forward and backward through
execution points to see a visual representation of run-time state,
including stack frames, pointers, and data structures.

However, to our knowledge, no existing program visual-
ization tool supports multiple remote users connecting to a
shared real-time session, which is crucial for tutoring and
collaborative learning in situations where people cannot meet
face-to-face. Codechella adds a real-time collaborative layer
atop traditional single-user program visualization tools.

Studies have found that interacting with visualizations is
more pedagogically effective than passively viewing them.
Most notably, Hundhausen et al. performed a meta-study of 24
algorithm visualization tools (similar to program visualizations
except that the user cannot write arbitrary code) [31] and
concluded that these visualizations led to the most learning
gains when students actively engaged and interacted with them.
Also, Myller et al. showed that these tools are effective for
collaborative learning in the classroom where students study
visualizations together in front of a single computer [8]. They
found that visualizations can be a medium for getting students
to collaborate more with one another in class. Codechella
strives to bring these benefits to an online setting.

© © O /2 online python Tutor - vis.

",
u

& C [y

- com/visuali 5

Online Python Tutor - Visualize program execution
B | [+

http:/ /pythontutor.com/visualize.htmi#togetherjs=0QF Oblspgp 3 -
T Apple iCloud Facebook Twitter Wikipedia Yahoo Newsv Popular v T

2 d)Cupy and send this URL to let someone (e.g., a tutor or friend) join your session:

End shared session http:/ QFOblspgp
our chat lo

Y

may be
d

Frames Objects
a) def listSum(numbers): C) E
if not numbers: Global frame function
listSum(numbers)
return @ listSum
else: myList tuple tuple
L d + 1 o2 | o
return f + listSum(rest) 1istsum i
- z
~ P
numbers
myList = (1, (2, (3, None))) y
total = listSum(myList) 7 IE / i
rest S S
b) Edit code / /
listSum / / //
<<rist) [<sack| Step 11of 22 [Fommard> | [Last=> TS ya Chat x
f2 /
line that has just executed < Wild Wolf, wild Wolf & You
rest
= next line to execute
wild Wolf
e.) @I
Cenerate permanent link
Click the button above to create a permanent link to your visualization. To repq me
brief error description in an email addressed to philib@pgbovine. net i don't understand this recursive
Generate embed code &l
To embed this visualization in your webpage, click the 'Generate embed code' b
HTML code into your webpage. Adjust the height and width parameters as neet
Online Python Tutor supports Python 2.7 and 3.3 with limited module imports | A
Fig. 2.

What are shared sessions?

End shared session

Copy and send this URL to let someone (e.g., a tutor or friend) join your session:
heep:/

Frames Objects

def listSum(numbers):
if not numbers:
return @
else:
(f, rest) = numbers
return f + listSum(rest)

Global frame function
ListSum(nunbers)
listsum

myList tuple tuple tuple
0 [t

listsum
numbers

mylist = (1, (2, (3, None))) ol

total = listSum(myList)
rest
Edit code

listsum
Chat
numbers

f |2

(<< st

<Back | Step 11 of 22 [forward > | [Last>>
er, Wild Wolf & You
ling that has just executed

rest
= next line to execute

me

e.) o

hi, how can i help?

Generate permanent link
L Brilliant Beaver

i don't understand this recursive
call
Generate embed code

To embed this v
4TML code into you

tion in your webpage, cli
bpage. Adjust the heighi

Overview of our Codechella system, which is built upon the Online Python Tutor program visualization tool [10]. Here is a typical use case: a.) The

user writes code in an ordinary Web browser, b.) runs their code and steps forward and backward through execution points, c.) sees a visualization of stack
frames, variables, data structures, and pointers at each execution point, d.) clicks the “Start a Codechella session” button and sends a unique URL to a tutor or
friend, and then e.) chats with other participants in the Codechella session while navigating the visualization and writing code together in-sync.

III. FORMATIVE OBSERVATIONS AND DESIGN GOALS

To formulate Codechella’s design goals, we observed TAs
in our university’s introductory programming course as they
helped students in the computer lab. Nothing can match the
fidelity of these in-person interactions, but how can we bring
some of its benefits to people who are learning online? Based
on our observations, we came up with these design goals:

Chat: In a typical tutoring interaction, the tutor would sit next
to the student as they are debugging a piece of code together.
The two would continually talk back and forth, with the tutor
making suggestions for the student to try. Thus, real-time chat
embedded within a code editor is a necessary base component.

Shared Multiple Cursors: The tutor would sometimes point
to relevant areas on the student’s screen for emphasis, but it
was a commonly-accepted best practice not to take over the
student’s keyboard to write code for them. Most of the time,
the student would be editing code in a text editor or IDE. The
tutor would encourage them to add lots of debugging print
statements, execute frequently, and then inspect, point to, and
discuss the resulting textual output together. Thus, Codechella
users must be able to see each other physically point to their
shared display.

Synchronized Code Editing and Visualizations: Sometimes
the tutor would manually draw diagrams of execution state
on a piece of paper to clarify concepts that were not clear
from studying the textual output alone. Also, aside from
receiving tutoring, students often worked together on program-
ming assignments in the computer lab, since they said that it
helped foster a sense of camaraderie. They would often pair-
program on a single computer and also draw diagrams on
the whiteboard to illustrate algorithms or program execution
state. Thus, Codechella users must be able to see and edit
a synchronized view of code and visualization diagrams as
though they were pair programming on a single computer.

IV. BACKGROUND: ONLINE PYTHON TUTOR

We built Codechella upon an existing Web-based program
visualization tool called Online Python Tutor [10]. Figure 2
shows how a user can use Online Python Tutor to write
code and visualize its runtime state: The user first visits
www.pythontutor.com and writes code directly in their browser
(Figure 2a). Despite its legacy name, Online Python Tutor
supports coding in five popular languages: Python, Java,
JavaScript, TypeScript, and Ruby. When the user presses the
“Visualize Execution” button, their code is sent to the Online
Python Tutor server to execute in a sandbox. The server sends
a complete execution trace back to the user’s browser, usually
in less than two seconds. The user can step forward and
backward through all execution points using a navigation slider
(Figure 2b). At each execution point, the user sees a detailed
visualization of their code’s runtime state, which includes stack
frames, variables, data structures, and pointers (Figure 2c).

Online Python Tutor can visualize arbitrary heap graphs
consisting of custom nested and linked data structures. These
automatically-generated visualizations mimic what people nor-
mally draw on the board or on paper when explaining code
execution state. Over 1.2 million people have used this tool
for lecturing, tutoring, debugging programming assignments,
creating video tutorials, and self-study to clarify their own
understanding [10].

V. THE CODECHELLA SYSTEM

The primary limitation of Online Python Tutor is that it
is fundamentally a single-user tool. So far, the main way
that people have been using it collaboratively is by sitting
together in front a single computer, writing code within it, and
discussing the visualizations in person. However, not everyone
has direct access to an in-person tutor or peer to help them
learn, so we designed a prototype system called Codechella
that mimics this sort of human interaction in an online setting.

Frames Objects Frames Objects

Global frame Global frame function

function
ListSun(numbers)
listsum listSum

myist twple myList

lis a5 . n‘s

™ "“
ra).
‘-!AJ

Listsun) Listsun

numbers numbers
/
fl2 flz /

rest rest

Fig. 3. Codechella displays the positions and clicks of all other participants’
mice in real time so that they can see each other pointing to on-screen
elements. In the figure above, the left participant moves their mouse downward
while clicking four times. The right participant sees that visualized as a
downward-moving hand icon that produces four bubbles.

Codechella is embedded within the existing Online Python
Tutor website. To activate it, the user:

1) Clicks the “Start a shared session” button at the top
of the Online Python Tutor app to start a new session.

2) Copies and sends a unique URL to anybody whom
they want to join their session (Figure 2d).

3) Everyone in the session collaboratively writes code
and steps through the visualization together while text
chatting in an embedded chat box (Figure 2e).

Note that participants still need to know one another to use
Codechella; it does not automatically match up participants.
People can coordinate when to sign into a session by sending
its unique URL via IM, email, or a discussion forum post.
Here are the main components of the Codechella system:

Real-Time Collaborative Code Editing: Codechella contains
a collaborative text editor, an extension of Ace (http://ace.c9.
io/) that works similar to Google Docs with added syntax high-
lighting or collaborative coding IDEs such as Collabode [32].
This base layer enables multiple people to edit code together
as though they were sitting in front of a single computer.

Embedded Text Chat: We chose a text chat format rather
than audio or video both due to its relative simplicity, and
also to the observation that coding-related terms and external
resource URLs (e.g., documentation websites) are far easier
to communicate via text than verbally. The chat widget is a
pop-up box at the bottom edge of the webpage (Figure 2e).

Shared Program Visualizations: When any user presses
the “Visualize Execution” button, Codechella executes the
currently-displayed code and shows an interactive visualization
of its runtime state using the underlying Online Python Tutor
visualization engine (Figure 2c).

All participants in a Codechella session always see the
same synchronized view of the code and visualization. This
means that if one participant clicks the “Visualize Execution”
button, then everyone sees the same visualization. And if
someone drags the slider to advance to a different execution
point (Figure 2b), Codechella automatically drags the slider
on everyone else’s Web browser and updates their visualiza-
tion to match that view. If a participant toggles any options
such as changing the current programming language, then the
respective option elements on all other participants’ browsers
are toggled as well. And if a participant clicks the “Edit code”

Frames Objects
Global frame dict
X "Jane" 30
/ "John" 25

Gregarious Giraffe

Fig. 4. Codechella enables remote users to point to and discuss complex
runtime state such as the following diagram of three global variables, with z
set to a Python tuple with elements pointing to a list and a dictionary.

button to enter the code editor, all other participants also get
switched over to the code editor. Again, this behavior emulates
what would happen if multiple people were physically sitting
in front of the same computer.

Figure 4 shows a detailed view of a participant (with
username “Gregarious Giraffe”) hovering over and clicking on
a specific pointer (arrow) in a complex nested Python data
structure. By tightly integrating into a program visualization
tool, Codechella enables its participants to talk about dynamic
properties of execution state (e.g., “why is this pointer now
referring to that element in the dictionary?”) rather than
simply discussing static properties of the code itself. Without
automatically-generated visualizations, people would need to
manually sketch these sorts of diagrams using a shared drawing
canvas application, which is tedious and error-prone.

Resolution-Independent Multiple Cursors: Studies of
computer-supported collaborative learning in the classroom
show that seeing each other’s mouse cursors in real-time
can improve engagement and learning outcomes [33]. When
multiple people sit around a single computer screen in real
life, they can physically point at the screen. To mimic this
interaction in a remote setting, Codechella shows the mouse
cursor positions of all other participants as colored hand icons,
labeled with their respective usernames. When a participant
clicks their mouse, a colored bubble emanates outward from
the click position, gradually expanding for two seconds before
disappearing. For instance, Figure 3 shows the left participant
moving their mouse downward while clicking four times.
The right participant sees those clicks visualized as bubbles,
along with the left participant’s current cursor position. Also,
Figure 4 shows the “Gregarious Giraffe” user pointing to and
then clicking on a particular arrow in the visualization. Note
that every participant still controls their own mouse cursor;
they simply see all other participants’ cursors.

The hand cursor displays are positioned relative to indi-
vidual DOM (Document Object Model) elements on the web
page, so they are resolution-independent. Thus, if a participant
clicks, say, a specific linked list element in the visualization,
their cursor position and bubbles will show up on top of
that exact same linked list element on all other participants’
screens, regardless of their current window resolutions. This
feature turns a mouse click into a precise way to focus attention

on a particular portion of the code or visualization. Resolution
independence is crucial since different users will most likely
have their Web browsers set to different resolutions, so syn-
chronizing cursors using absolute x-y positions will not work.

Implementation: We implemented Codechella by modifying
Mozilla’s Together]JS library (http://togetherjs.com) and inte-
grating it into the Online Python Tutor codebase. TogetherJS
provides JavaScript code for synchronizing multiple users’
Web browsing sessions in real time using WebSockets. When
a Codechella user performs an action such as sending a chat
message or stepping through the visualization, that action
gets sent to the WebSocket-enabled Node.js server, which
immediately broadcasts it to all other users in the same session.
Latency is bound by each user’s Internet connection speed,
but there is little additional overhead since each action sends
minimal amounts of data. All modern Web browsers support
WebSockets, so Codechella does not require any plugins.

We designed Codechella for one-on-one and small-group
interactions, which mimics a small number of people sitting
in front of a single computer in a lab. It has several benefits
over screensharing software: 1.) Every user has their own
window that they can move and resize to their own screen
resolution rather than forcing all users to see one fixed-size
display. This independence gives users a greater sense of
control and privacy, since only one browser tab is being shared.
2.) Multiple synchronized cursors enables each user to point
to different on-screen components. 3.) Encapsulating a shared
session within a URL makes it easy to embed our system
within a MOOC or online tutor-matching pool (Section VII); it
would be logistically harder for novice learners to use desktop
screensharing software that requires installation and setup.

VI. ONLINE DEPLOYMENT CASE STUDY

To demonstrate the efficacy of our Codechella prototype,
we deployed it as a live feature on the Online Python Tutor
website (www.pythontutor.com) in May 2014 and logged all
usage data on our server. We analyzed nine months of server
logs to explore the following research questions:

e s Codechella serving people around the world who
are unable to get together to learn face-to-face?

e How do people use Codechella for tutoring and col-
laborative learning?

e How much do people interact with the visualizations
rather than simply using it as a coding and chat tool?

e What kinds of knowledge do people appear to learn
during Codechella sessions?

Although this kind of server log analysis lacks the con-
trolled conditions of a user study, it provides naturalistic usage
data at a scale that we cannot feasibly replicate in our lab.
Thus, the findings we present here represent a case study of
how people actually used Codechella in the wild, and are not
meant to test specific hypotheses about usability or learning.

A. Codechella Usage Overview

During the nine-month period in our log data between May
29, 2014 and March 2, 2015, Codechella users participated
in 384 sessions. We define a session as containing at least

[=2]
o

50

g 30 g 20
o 25 o
o 0
@ 20 Q30
g 15 g 0
=10 =

=
o

0750 100 150 200 250 300 350 400
Num. chats in session

20 40 60 80
Session duration (minutes)

100 120

Fig. 5. Number of minutes (mean=58, median=42) and number of chat
messages (mean=99, median=68) in each of the 299 Codechella sessions.

Num. transitions

20 40 60 80 100 120
Seconds between chat transitions

Fig. 6. Seconds between chat transitions (mean=84s, median=10s). A
transition occurs between two consecutive chats sent by different participants,
so it shows how long someone waits before receiving a response to their chat.

2 participants and at least 10 chat messages. This heuristic
eliminates thousands of instances of people simply testing out
or demoing the system without intending to learn using it.

English was the most common language used in chats (60%
of sessions), followed by Portuguese (11%) and Spanish (5%).
Since members of our research team knew all three of these
languages, we could understand the contents of those chat logs.
For the remainder, we used Google Translate to automatically
translate their chats into English so that we could understand
them. 85 sessions either could not be translated or contained
only chats about non-programming topics or spam, SO we
filtered those out as well. In the end, we were left with 299
sessions held in 27 different (translatable) languages. Our data
analyses in this paper consider only these 299 sessions. Also,
all three researchers read over the chat logs together to code
for qualitative features such as indicators of learning.

Participants logged on from 296 different cities in 40
different countries, as approximated by IP address geolocation.
Most sessions (66%) had two participants, so they were one-
on-one interactions; the mean number of participants was 3.

There was a large variation in how long each session lasted,
ranging from a few minutes up to two hours. The left half of
Figure 5 shows that most sessions lasted under an hour, with
a median duration of 42 minutes; the right half shows the
number of chat messages exchanged, with a median of 68.

Figure 6 visualizes wait times between chats sent by dif-
ferent participants and shows that they often responded to one
another within 10 seconds. This median response time is lower
than typical response times of 30 seconds to 2 minutes reported
by studies of general instant messaging (IM) interactions [34],
which indicates that participants were highly responsive to one

Fig. 7.
involved participants from both of those countries.

A line connects two countries if at least one Codechella session

another during Codechella sessions.

B. How Codechella Serves Geographically-Separated Users

Although Codechella can be a convenient alternative to
meeting in person, it cannot surpass the fidelity of face-to-face
interactions. Thus, a more compelling use case for Codechella
is connecting people who cannot possibly meet face-to-face.
How often did that occur in our live deployment? To find
out, we used the MaxMind geolocation tool [35] to find each
participant’s geographical location using their IP address.

57% of sessions (171 out of 299) had participants who
came from different cities, and 12% (36 out of 299) had
participants from different countries. Since these participants
did not live in the same place, they could not meet in person
to work together. Figure 7 visualizes the international sessions,
with a link between two countries if at least one session
contained participants from both of those countries. We do
not have data on how these participants found one another to
start a shared Codechella session, but they could have been
fellow students in a MOOC or other online course.

The majority of sessions (57%) involved participants who
were geographically separated. But when we read all of the
chat logs, we saw that in 35% of sessions (106 out of 299),
participants mentioned references to shared real-life context. It
was common for friends to suddenly start talking about their
personal lives in the middle of working on code together. For
instance, one pair said: “A: I will give you more detail about
life when you have more awake time. / B: Any decision on
Micah’s wedding party? / A: I don’t think we can go. / B:
No? You going to Switzerland?” These anecdotes indicate that
Codechella can be useful even for people who know each other
in real life. It can be more convenient to sync up online than
to coordinate a time and place to meet in person.

C. Farticipant Interactions with Program Visualizations

Do Codechella participants interact with the automatically-
generated program visualizations? Or are they simply using it
as a collaborative text editing and chat tool, in which case it
would be no more useful than, say, Google Docs?

To find out, we counted the types of actions present in the
server logs. There were 96,866 total actions logged across 299
sessions (324 actions per session, on average). There were four
types of actions, each initiated by one participant:

Chats Sent Run, Step, or Editor Actions

100
60
s &0 50
& 5
» 60 0 40
%] w0
(] [
(1] n 30
. 40 .
€ IS
=] S 20
=2 20 =2
10
0

o 20 40 60 8 10 % 20 40 60 80 100
% by dominant participant % by dominant participant

Fig. 8. Each participant sent around half of the chats in a Codechella session,
with a median of 57% of chats sent by the dominant participant (left graph).
In contrast, one participant usually performed the majority of non-chat actions
(run code, step, editor), with a median of 75% by the dominant participant
(right graph). Distributions differ with p < .001 in a Mann-Whitney U test.

e Run - Running (executing) the currently-displayed
code and producing a visualization of its execution
state. 6% of total actions were of this type.

e Step — Stepping to a different execution point in the
code visualization, by either pressing the “Previous”
or “Next” buttons or by dragging the navigation slider
(Figure 2b). 57% of actions were of this type.

e Open Editor — Opening the code editor by pressing
the “Edit code” button. Note that the server does not
log when someone is typing code in the editor itself,
only when someone switches from the visualization to
the code editor. 6% of actions were of this type.

e Chat — A single chat message sent by a participant in
the chat box. 31% of actions were of this type.

The majority (69%) of actions involved engaging with the
program visualization tool while only 31% were chats, which
indicates high engagement with the visualization. Most actions
(57%) were of participants stepping to view data structures at
different execution points.

In 47% of sessions, participants directly referred to the
visualization in their chat messages, which is another indicator
of engagement. For instance, one wrote: “ok, list is the variable
declared in line 1 and you see the content of the list in the
yellow boxes with the number of their position 0, 1, 2 or 3.
this will prove to be very useful when you will have a little
more complicated code as you will actually see what is going
on in your script.” Another wrote: “so if you go back a step ...
horse = mask ... that reassigns horse to the lambda function.”

How did participants balance chatting and interacting with
the visualization? Figure 8 shows how participants sent roughly
equal numbers of chats in a session (most sessions had two
participants), but usually one dominant participant drove the
interface by interacting most with the visualization (run code,
step, and editor actions). This observation is consistent with
in-person pair programming and tutoring sessions where one
person controls the keyboard and mouse while chatting with
their partner. Even though one person is mostly interacting
with the visualization, all participants see the same real-time
synchronized view.

D. Tutoring and Collaborative Learning Sessions

Even though we did not advertise any specific use case
for Codechella, we found from reading chat transcripts that
sessions naturally fell into one of two categories:

e Tutoring — A one-on-one interaction where one per-
son was clearly in the role of an expert tutor, and
the other was the tutee. The tutor either explained
a programming concept or helped the tutee debug a
specific problem in their code. These comprised 40%
of sessions (120 out of 299).

e Collaborative Learning — When two or more peers
work together on a programming assignment or debug-
ging code, without one person being the clear expert.
These comprised 60% of sessions (179 out of 299).

Here is one typical tutor-tutee exchange consisting of a
question followed by an explanation:

Tutor: one thing that I think is very helpful is to write “pseudocode”
- have you heard of that before?

Tutee: In the discussion space on edx, people wrote this whole code
in 14 lines. No I don’t know pseudocode

Tutor: Pseudocode is simply writing out the instructions in English,
but step by step so that they can be translated easily into code.

Another type of tutoring interaction is the tutor inspecting
the tutee’s code and asking them specific questions about it.
For instance: “you’re passing in a bunch of arguments to the
init - do you know the significance of those?”

From reading tutee reactions, sessions where tutors used
Socratic questioning techniques appeared effective. Here is an
example series of questions that a tutor asked, which led the
tutee to hone in on and fix the bug in their own code (tutee
answers omitted for space): “our program crashed. why do you
think it crashed? / what structure is it going to be? / ok how
about sorted(t[2]) / how about t[1]? / whats the type? / its
going to be an integer / whats the result of adding an integer
and a list? / yeah. lets fix the code. how would we fix it?”

Another effective tutoring technique was for the tutor to
prompt the tutee to describe their mental model of how the
code works, and then diagnose misconceptions. For example,
one session started with the tutor saying: “well, rather than
just trying a bunch of things, let’s figure out what you really
want to do. talk me through how this function works.”

One more salient feature of good tutoring sessions was
the tutor displaying encouragement, especially when the tutee
appeared frustrated. For example:

Tutee: oh my god im so terrible im sorry,

Tutor: not a problem at all. you have writen [sic] little code yet. it
will take a while for it to become more comfertable [sic]

In contrast, during seemingly ineffective sessions, the tutor
would take over the conversation without asking questions. For
instance, one tutor curtly led with, “i’m going to step through
the code, pay attention.” In those sessions, the tutee passively
responded with cursory nods such as “ok™ or “sure” without
any indication of engagement. This behavior reminded us of
an overbearing in-person tutor taking over the tutee’s keyboard

and telling them to just watch.

In collaborative learning sessions, participants were usually
unsure of their assumptions, so they stepped through the
visualization and asked one another questions to figure out
the code together. For example:

A: oh i guess basestring is checking if its a string?

B: you can step forward and backward if u want. perhaps?
A: is a string automatically a list in python?

B: lemme see

A: no wonder the stack was weird. i guess it calls printitems each
time we have a string

Another salient feature of collaborative learning sessions
was friendly banter and cursing. Reading those chat transcripts
felt like watching friends working on a programming assign-
ment together while teasing one another. While cursing in
tutoring sessions appeared sparingly as a sign of the tutee’s
frustration, cursing was more liberally used throughout collab-
orative learning sessions. Taken out of context, such cursing
might appear rude, but within those conversations, they felt
like a natural and humanizing part of the collaborative learning
process. Here is a mild example:

A: I don’t feel so bad not getting this now. I thought it was right in
front of me and I was being stupid

: here’s an alternative ugly ass function

: hahaha

: 80 basically you first find bob

: 1 have the old counting bob function saved so hold on

: if bob is there it’s like kewl. oh you need s

= T~ T~

;1 got it. you beautiful bastard

And another one where two participants excitedly stepped
through the visualization: “ok so we’re goin into our main loop
/ rad as sh*t u can see the value of i there it is 0 / amazing /
and u can see that guess_clue is an empty motherf**ker”

Banter and cursing acted as playful encouragement in
collaborative learning sessions. Similar lab studies have shown
that banter and cursing amongst peers can improve rapport and
lead to significant learning gains [36].

E. Indicators of Learning

What did participants learn in Codechella sessions? To
address this question, we read all of the chat transcripts and
manually coded for indicators of learning. However, we cannot
make any claims about true learning since we did not run any
formal assessments to measure gains, depth, or retention.

We observed both declarative (“what-is”) and procedural
(“how-t0”’) knowledge being exchanged in Codechella ses-
sions. Collaborative learning sessions focused on procedural
knowledge since participants were usually trying to debug
or figure out how to solve a class programming assignment
together rather than learning brand new concepts. Tutoring ses-
sions contained a mix of declarative and procedural knowledge.

All indicators of learning were at the lower three levels of
Bloom’s taxonomy: remembering, understanding, and applying
knowledge [11]. This finding was unsurprising because we

did not expect these informal chat sessions to result in more
substantive learning at the higher levels of Bloom’s taxonomy:
analyzing, evaluating, and creating.

Some indicators of learning involved remembering
specifics about Python language terminology. For instance:

Tutor: So, are you familiar with what a “return” statement does?
Tutee: don’t you have to do that so you can print it [?]

Tutor: Right, so if you want to assign the output of a function to a
varaible [sic], you have to return something inside the definition of
that function

Some indicators were at the next level of Bloom’s taxon-
omy: understanding how each Python language concept works,
usually by exemplifying with a specific code example, and
also by comparing to similar concepts in other programming
languages. For instance, when trying to figure out pointers in a
collaborative learning session, one participant said: “reference
is deleted, object stays because another reference is still in
place, then a new reference (using the same name “b”) is put
back in place.” The other participant responded, “basically
python author implemented pointers by default, referencing
and dereferencing, took away the complexity for majority of
the programmers.” The participants then compared Python
pointers to those in other languages they used in the past such
as C++, Java, Objective-C, and PHP.

Finally, in some tutoring sessions, we saw tutees applying
their newly-learned knowledge to solve a new problem. A good
tutor would explain a concept and then get the tutee to apply
it in a novel way in the context of their own code. We did not
observe any knowledge application in collaborative learning
sessions, which were much more focused on debugging a spe-
cific piece of code rather than generalizing to other examples.

F. Limitations

These findings come from a nine-month-long online de-
ployment, but we have not yet conducted controlled experi-
ments to formally evaluate the usability of Codechella or how
it compares to alternative interfaces. We have not collected any
demographic information from Codechella users, so we do not
know whether they are a representative sample from a typical
online learning community such as a MOOC. We have also not
directly compared Codechella to in-person learning. Finally,
we can only point out indicators of learning in chat transcripts
but cannot make definitive claims about actual learning since
we did not personally interview or test the participants.

VII. FUTURE WORK

A potential Codechella user must now personally know
a tutor or peer who is willing to join a session with them.
Then they must coordinate joining using external means such
as sending a session URL via email or IM. However, many
people do not have access to someone who can tutor or work
with them on-demand, so they cannot use this tool.

Since Online Python Tutor is a popular website for learning
Python, there are around 60 users concurrently on the website
at any given moment. Thus, we want to create a learner match-
ing interface hosted on that website where strangers can start
Codechella sessions with one another based on their learning

needs. The main challenges here are determining appropriate
matches based on user skill levels and interests, dealing with
potential language barriers due to the international user base
(Online Python Tutor users come from over 165 countries), and
maintaining high-quality conversations when participants are
now strangers instead of personal acquaintances. If successful,
this interface could bring the benefits of one-on-one tutoring
and peer learning to a much wider population of learners,
especially self-directed learners who do not have immediate
access to formal schooling or tutoring resources.

Second, people do not use Codechella in isolation. From
reading chat logs, we saw that many participants started a
Codechella session while they were in the middle of debugging
a piece of code written elsewhere, working on a class pro-
gramming assignment, or setting up a tutoring session via, say,
email or instant messenger. Thus, future systems of this sort
should not exist as standalone services, but rather be tightly
integrated into relevant external applications.

One natural integration is with a computer programming
MOOC. A learner could launch a Codechella session when
watching lecture videos, posting on the discussion forum, or
attempting to solve programming assignments in the Web-
based code editor. A potentially powerful benefit of MOOC
integration is that the MOOC provider’s server keeps a de-
tailed learning profile for each learner, which includes their
engagement with content and grades on assignments. It can
use this information for more effective skill level matching to
find tutors or to form ad-hoc Codechella study groups.

Another potential integration is with production-grade mes-
saging apps such as Skype or Google+ Hangouts. Video chat
and drawing on a shared virtual whiteboard could augment
Codechella’s current text- and visualization-based interface.

More broadly, future Codechella-like tools can be directly
integrated into an IDE so that users can leverage collaborative
program visualizations to debug production-scale software.
Here the main challenge is scaling up the visualizations to
support larger pieces of code. Using such an interface, a
software engineer can solicit real-time live help from experts
or peers on the Web as they are coding in their IDE.

VIII. CONCLUSION

We have presented Codechella, which is, to our knowledge,
the first multi-user program visualization system. Codechella
combines real-time synchronized visualizations with embed-
ded chat to emulate the in-person experience of learning pro-
gramming together. A case study of 299 Codechella sessions
initiated by anonymous users on the Online Python Tutor
website [10] indicates that people from 296 cities across 40
countries: a.) did both tutoring and collaborative learning with
geographically-separated partners, b.) interacted heavily with
the visualizations while chatting, and c.) appeared to have
gained new knowledge about basic programming. We envision
a future where these kinds of tools help humanize online
education by connecting learners from around the world.

ACKNOWLEDGMENTS

Thanks to Carrie Cai, Logan Gittelson, and Juho Kim for
their feedback. This work was supported in part by the National
Science Foundation under grant NSF CRII IIS-1463864.

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

“Codecademy: Learn to code,” http://www.codecademy.com/, accessed:
April 2015.

“Khan Academy: Computer programming,” https://www.khanacademy.
org/computing/computer-programming, accessed: April 2015.

M. Guzdial, “Limitations of MOOCs for Computing Education -
addressing our needs: MOOCs and technology to advance learning and
learning research (ubiquity symposium),” Ubiquity, 2014. [Online].
Available: http://doi.acm.org/10.1145/2591683

B. Du Boulay, “Some difficulties of learning to program,” Jour. Edu-
cational Computing Research, vol. 2, no. 1, 1986. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1207/S15327809JLS0904_3

B. DiSalvo and A. Bruckman, “From interests to values: Computer
science is not that difficult but wanting to learn it is.” ser. CACM,
2011.

K. VanLehn, “The relative effectiveness of human tutoring, intelligent
tutoring systems, and other tutoring systems,” Edu. Psychologist,
vol. 46, no. 4, pp. 197-221, 2011. [Online]. Available: http:
//www.tandfonline.com/doi/abs/10.1080/00461520.2011.611369

A. King, “Structuring peer interaction to promote high-level cognitive
processing,” Theory into Practice, vol. 41, no. 1, pp. pp. 33-39, 2002.
[Online]. Available: http://www.jstor.org/stable/1477535

N. Myller, R. Bednarik, E. Sutinen, and M. Ben-Ari, “Extending
the engagement taxonomy: Software visualization and collaborative
learning,” Transactions on Computing Education, vol. 9, no. 1, pp.
7:1-7:27, Mar. 2009. [Online]. Available: http://doi.acm.org/10.1145/
1513593.1513600

J. Sorva, V. Karavirta, and L. Malmi, “A review of generic program
visualization systems for introductory programming education,” ACM
Transactions on Computing Education, vol. 13, no. 4, pp. 15:1-15:64,
Nov. 2013. [Online]. Available: http://doi.acm.org/10.1145/2490822

P. J. Guo, “Online Python Tutor: Embeddable Web-based Program
Visualization for CS Education,” ser. SIGCSE ’13. ACM, 2013,
pp. 579-584. [Online]. Available: http://doi.acm.org/10.1145/2445196.
2445368

L. W. Anderson and D. R. Krathwohl, Eds., A taxonomy for learning,
teaching, and assessing: A revision of Bloom’s taxonomy of educational
objectives. Allyn & Bacon, 2000.

A. M. Paul, “Bill Gates Is an Autodidact. You’re Probably Not. Ed tech
promoters need to understand how most of us learn.” Slate, Jul. 2014.

T. Balch, “MOOC Student Demographics (Spring 2013) -
http://augmentedtrader.com/2013/01/27/mooc- student-demographics/
Accessed: Sept, 2014.”

G. Christensen, A. Steinmetz, B. Alcorn, A. Bennett, D. Woods, and
E. J. Emanuel, “The MOOC Phenomenon: Who Takes Massive Open
Online Courses and Why?” (working paper), 2013.

P. A. Kirschner and J. J. van Merrienboer, “Do learners really
know best? urban legends in education,” Educational Psychologist,
vol. 48, no. 3, pp. 169-183, 2013. [Online]. Available: http:
//dx.doi.org/10.1080/00461520.2013.804395

J. Huang, A. Dasgupta, A. Ghosh, J. Manning, and M. Sanders,
“Superposter behavior in MOOC forums,” ser. L@S "14. ACM, 2014,
pp. 117-126. [Online]. Available: http://doi.acm.org/10.1145/2556325.
2566249

S. F. J. Mak, R. Williams, and J. Mackness, “Blogs and forums as
communication and learning tools in a MOOC,” in Proceedings of the
7th International Conference on Networked Learning, 2010, pp. 275—
284.

B. S. Bloom, “The 2 sigma problem: The search for methods of
group instruction as effective as one-to-one tutoring.” Educational
Researcher, vol. 13, no. 6, pp. 4-16, 1984. [Online]. Available:
http://www.eric.ed.gov/ERICWebPortal/detail 7accno=EJ303699

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

[36]

R. Schoenfeld-Tacher, S. McConnell, and M. Graham, “Do no harm:
A comparison of the effects of on-line vs. traditional delivery
media on a science course,” Jour. Science Ed. and Technology,
vol. 10, no. 3, pp. pp. 257-265, 2001. [Online]. Available:
http://www.jstor.org/stable/40188615

S. A. Siler and K. VanLehn, “Learning, interactional, and motivational
outcomes in one-to-one synchronous computer-mediated versus face-
to-face tutoring,” Intl. Jour. A.l in Education, vol. 19, no. 1, pp.
73-102, Jan. 2009. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1517338.1517342

A. J. Brush, D. Bargeron, J. Grudin, A. Borning, and A. Gupta,
“Supporting interaction outside of class: Anchored discussions vs.
discussion boards,” ser. CSCL ’02, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1658616.1658676

M. Guzdial and J. Turns, “Effective discussion through a computer-
mediated anchored forum,” Journal of the Learning Sciences,
vol. 9, no. 4, pp. 437-469, 2000. [Online]. Available: http:
/Iwww.tandfonline.com/doi/abs/10.1207/S15327809JLS0904_3

S. Zyto, D. Karger, M. Ackerman, and S. Mahajan, “Successful
classroom deployment of a social document annotation system,’
ser. CHI ’12. ACM, 2012, pp. 1883-1892. [Online]. Available:
http://doi.acm.org/10.1145/2207676.2208326

J. Cambre, C. Kulkarni, M. S. Bernstein, and S. R. Klemmer,
“Talkabout: Small-group discussions in massive global classes,” ser.
L@S ’14. ACM, 2014. [Online]. Available: http://doi.acm.org/10.
1145/2556325.2567859

C. Kulkarni, J. Cambre, Y. Kotturi, M. S. Bernstein, and S. R. Klemmer,
“Talkabout: Making distance matter with small groups in massive
classes,” ser. CSCW 15, 2015.

D. Coetzee, S. Lim, A. Fox, B. Hartmann, and M. A. Hearst, “Structur-
ing interactions for large-scale synchronous peer learning,” ser. CSCW
’15, 2015.

S. Lim, D. Coetzee, B. Hartmann, A. Fox, and M. A. Hearst,
“Initial experiences with small group discussions in MOOCs,”
ser. L@S ’14. ACM, 2014, pp. 151-152. [Online]. Available:
http://doi.acm.org/10.1145/2556325.2567854

D. Coetzee, A. Fox, M. A. Hearst, and B. Hartmann, “Chatrooms in
MOOCs: All talk and no action,” ser. L@S ’14, 2014, pp. 127-136.
[Online]. Available: http://doi.acm.org/10.1145/2556325.2566242

R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm,
R. McCartney, J. E. Mostrom, K. Sanders, O. Seppéld, B. Simon,
and L. Thomas, “A multi-national study of reading and tracing skills
in novice programmers,” in Working Group Reports from ITiCSE
on Innovation and Technology in Computer Science Education, ser.
ITiCSE-WGR ’04. New York, NY, USA: ACM, 2004, pp. 119-150.
[Online]. Available: http://doi.acm.org/10.1145/1044550.1041673

T. L. Naps, “et al. Exploring the role of visualization and engagement
in computer science education,” SIGCSE Bulletin, vol. 35, no. 2.
[Online]. Available: http://doi.acm.org/10.1145/782941.782998

C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A meta-study of
algorithm visualization effectiveness,” Journal of Visual Languages and
Computing, vol. 13, p. 259-290, 06/2002 2002.

M. Goldman, G. Little, and R. C. Miller, “Real-time collaborative
coding in a web ide,” ser. UIST "11.

N. Moraveji, R. Lindgren, and R. Pea, “Organized mischief: Comparing
shared and private displays on a collaborative learning task,” ser.
CSCL’09, 2009.

D. Avrahami, S. R. Fussell, and S. E. Hudson, “IM waiting: Timing and
responsiveness in semi-synchronous communication,” ser. CSCW 08,
2008. [Online]. Available: http://doi.acm.org/10.1145/1460563.1460610
“MaxMind GeolP databases and web services,” http://www.maxmind.
com/en/geolocation_landing.

A. Ogan, S. Finkelstein, E. Walker, R. Carlson, and J. Cassell,
“Rudeness and rapport: Insults and learning gains in peer tutoring,”
in ITS ’12, 2012. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-30950-2_2

