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ABSTRACT
Many individuals exhibit unconscious body movements
called mannerisms while speaking. These repeated changes
often distract the audience when not relevant to the verbal
context. We present an intelligent interface that can auto-
matically extract human gestures using Microsoft Kinect to
make speakers aware of their mannerisms. We use a sparsity-
based algorithm, Shift Invariant Sparse Coding, to automati-
cally extract the patterns of body movements. These patterns
are displayed in an interface with subtle question and answer-
based feedback scheme that draws attention to the speaker’s
body language. Our formal evaluation with 27 participants
shows that the users became aware of their body language
after using the system. In addition, when independent ob-
servers annotated the accuracy of the algorithm for every ex-
tracted pattern, we find that the patterns extracted by our al-
gorithm is significantly (p < 0.001) more accurate than just
random selection. This represents a strong evidence that the
algorithm is able to extract human-interpretable body move-
ment patterns. An interactive demo of AutoManner is avail-
able at http://tinyurl.com/AutoManner.
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INTRODUCTION
Have you ever felt unaware of your body language while giv-
ing a public speech? What did you do with your hands? Did
you move around while speaking or stand still? How did you
use your gestures to emphasize a point that you wanted to
make?

Our conscious mind can process only 40 bits of information
per second [22, 38]. As a result, we become easily over-
whelmed in public speaking while thinking about what to say
next. In this situation, many of our innate functions are del-
egated to the subconscious mind, which can process up to
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4 million bits per second. This often results in unconscious
and possibly repetitive patterns of movements. These move-
ments include gripping or leaning, tapping fingers, whole
body movements (such as rocking, swaying, pacing), jingling
pocket change, adjusting hair or clothing, etc. The Toast-
masters group [36] refers to these as mannerisms. These can
significantly distract the audience.

In this paper, we present—AutoManner—an interface to au-
tomatically extract and visualize the repetitive patterns of
the speaker’s movements during public speaking. AutoMan-
ner captures and analyzes body language using a Microsoft
Kinect [39] depth sensor to make speakers aware of their
mannerisms. We implement a subtle feedback technique that
involves pinpointing frequent movements and asking ques-
tions about their meanings. In our experiment with 27 partic-
ipants, the users reported that the use of AutoManner made
them aware of their mannerisms.

Most of the existing systems [27, 24, 6, 33] that assess the
quality of public speech utilize a supervised classification ap-
proach. In supervised methods, the system either assigns the
speakers to a predefined category or a number indicative of
the quality of the speech. Although this supervised approach
is beneficial for ontological categorization, it may not pro-
vide any insights about the strengths and weaknesses of an
individual. For example, it usually does not offer any insight
as to why particular body language is rated poorly, or which
patterns in their body movement were not effective. In addi-
tion, a supervised approach is unable to detect idiosyncratic
or unexpected body movements, as it is difficult to define all
possible patterns that a person may show in a given context.

One possible way to solve this problem is to share the videos
with public speaking experts and get subjective feedback.
Challenges include identifying those experts and paying for
their time. Another possibility is to obtain cheap micro-level
annotations in the cloud using crowdsourcing [26]. However,
crowdsourcing poses an inherent threat to the speaker’s pri-
vacy. Speakers may not feel comfortable about real people
viewing their videos and judging their speaking performance
and body language. In this paper, we address this challenge
by developing a fully automated framework that allows users
to obtain feedback while being in complete control of their
data.

In one of our previous projects [35], we proposed a sparsity-
based algorithm to extract repetitive body movements (be-
havioral cues). In the AutoManner interface, we use this
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algorithm to automatically extract and show these repetitive
movements to the speaker.

However, not every repetitive movement is bad. Specific ges-
tures can be distracting (mannerism) or meaningful depend-
ing on how cohesive it is with the verbal content [13]. Cur-
rently, the proposed interface cannot determine the context
of the verbal content. Nevertheless, it makes the speakers
aware of their body language by highlighting the repeated
body movements and asking questions about them. Reflec-
tion through answering questions about body language is a
subtle way to show the speaker’s idiosyncrasies and manner-
isms. In our experiments, we found evidence supporting this
design, as the participants reported becoming self-aware of
their body language. A similar effect of awareness might also
be achieved if one carefully watches and annotates the en-
tire video. AutoManner automatically highlights the regions
of repetitive body movements, thus eliminating the tedious
manual observation and annotation process.

We claim the following contributions in this paper:

• We develop an intelligent interface that can automatically
extract repetitive patterns of body language and visualize
them to make public speakers aware of their body lan-
guage.

• We formally evaluate the interface with 27 public speakers.
They self-reported to become aware of their mannerisms
after using our interface.

• Our experiment provides strong evidence (p < 0.001) that
the algorithm we used is able to extract more accurate and
human-interpretable body movement patterns than just ran-
dom sampling.

• To the best of our knowledge, this is the first attempt to
automatically analyze mannerisms in public speaking.

LITERATURE REVIEW
Nonverbal behavior (e.g. body language, vocal prosody, fa-
cial expressions, etc.) is an important modality for inter-
personal communication. It is shown to be predictive of
human communication skills in many different domains—
for instance, patient satisfaction [11], analysis of persuasive-
ness [30], dating [28], job interviews [2, 23], etc. Body lan-
guage is an important component of nonverbal behavior [16].
Cognitive neuroscientist Beatrice de Gelder [10], after an ex-
tensive literature review, concluded that body language is as
reliable a metric as facial expressions.

Constituents of a Good Public Speech
Both verbal and nonverbal behaviors are important factors
in good public speaking [32]. Strong speakers communicate
ideas through a delicate interplay between verbal content and
body language (body postures, head and hand movements,
etc.). Schreiber et al. [29] analyzed the characteristics of good
public speeches in order to develop a rubric for judging pub-
lic speaking competency. Their work substantiates the im-
portance of congruence between verbal and nonverbal factors
during public speaking.

Experts on public speaking [13, 9, 18, 36] usually stress
the importance of coherence in verbal content and body lan-
guage. Hoogterp mentioned in his book [13] that body lan-
guage should be synchronized with a speech for effective
nonverbal communication. In addition, hand gestures should
convey the same meaning as the verbal content. The Toast-
masters group [36] pointed out that eliminating distracting
mannerisms was necessary for conveying spontaneous and
genuine feelings through body language.

Automated Assessment of Public Speaking Competence
A considerable amount of work has been done to model and
automatically predict the performances of public speaking.
Pfister and Robinson [27] proposed a real-time system to
classify affective states and to assess public speaking skills.
They extracted prosodic features such as pitch, intensity, and
MFCC to classify a speaker’s affective states into one of nine
discrete categories (absorbed, excited, interested, joyful, op-
posed, stressed, sure, thinking, unsure) using a Support Vec-
tor Machine (SVM). Similarly, they classified public speak-
ing skills into one of six discrete classes (clear, competent,
credible, dynamic, persuasive, and pleasant).

Nguyen et al. [24] proposed an online feedback system that
provides feedback about a speaker’s body language on a scale
of five degrees, from bad to excellent. They used a Kinect
skeleton tracker to track the postures and gestures of the
speaker. They then used a nearest-neighbor classifier to com-
pare those movements to a set of predefined templates of pos-
tures and gestures in order to determine the quality of the
speaker’s speech. This method cannot account for completely
novel body language. In addition, this method is not suitable
for assessing cases where a gesture is meaningful in one con-
text but not meaningful in another. Chen et al. [6] described a
multimodal sensing platform for scoring presentation skills.
They used syntactic, speech, and visual features (e.g. hand
movements, head orientations, etc.) with supervised regres-
sion techniques (Support Vector Regression and Random For-
est) to predict a continuous score indicating public speaking
performance. They claimed a correlation coefficient of 0.38
to 0.48 with the manually annotated ground truth.

All the systems discussed so far utilize supervised classifica-
tion/regression approaches. This may be an artifact of sim-
ilar trends in human action/activity recognition literature [1,
7, 19, 37]. Recently, some work has been done on unsuper-
vised analysis of human action detection. Niebles et al. [25]
proposed a method of unsupervised learning of human action
categories using a Latent Dirichlet Allocation model. Zhou
et al. [40] proposed Aligned Cluster Analysis (ACA), which
detects patterns in signals using k-means clustering and dy-
namic time warping. Tanveer et al. [35] proposed a sparse
coding based approach for detecting common behavioral cues
for body language. In this paper, we use the method men-
tioned in Tanveer et al. for capturing the fidgeting patterns
and the mannerisms of public speakers.

Design of Effective Feedback
Feedback is an important component for any nonverbal skills
assessment and training system. The predicted skill levels
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Figure 1: Steps for capturing the Motion Capture (MoCap)
signal.

and useful recommendations should be effectively and intu-
itively conveyed to the users. A significant amount of work
has already been done on designing useful feedback systems.
For instance, Hoque et al. [14] showed that it is possible
to improve job interview performances by reviewing one’s
own videos augmented with raw features such as smile, head
movements, speech, and prosody. They used a virtual avatar
to practice the job interviews. Tanaka et al. [33] also em-
ployed virtual characters for practicing social skills for people
with Autism Spectrum Disorder (ASD). Tanveer et al. [34]
designed a system to provide live feedback on prosodic be-
havior using Google Glass. They utilized secondary display
phenomenon for minimizing distractions during the speech.

Chollet et al. [8] performed extensive analysis on learn-
ing strategies and usefulness of a virtual audience in public
speaking training. They analyzed the efficacy of an inter-
active learning framework (Cicero [3]) where speakers can
practice speaking in a safe and engaging environment with a
virtual audience. The virtual audience can provide nonverbal
feedback to signal elevated attention, rapport, lack of interest,
or disagreement. They show that the interactive virtual audi-
ence results in significant progress in perceived attention and
combined improvement compared to the traditional ways of
providing feedback.

TECHNICAL DETAILS
Many public speakers display their own idiosyncratic body
language, which makes it difficult to compile an exhaustive
list of all movement patterns. Without an exhaustive list, we
cannot train a supervised classification system to detect pat-
terns of body movements. To address this challenge, we have
developed an algorithm to extract common body movements
automatically—without any human supervision on segment-
ing or labeling of a training dataset. In this section, we de-
scribe this method.

Data Capture
In order to sense the movements of the speakers, we record
the speaker’s activity using a Kinect [39] depth sensor. Kinect
uses an infrared projector and sensor arrangement to record
depth images of the region in front of the device. We use a
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Figure 2: A simplified illustration of MoCap signal model.
Only one component is shown (k = 1).

skeleton tracker [31] to extract the 3D coordinates of a per-
son’s body from the depth images. The skeleton tracker can
track twenty joint locations of the person’s body, as shown
in Figure 1. We refer to the time-sequence of all the joint
locations as a Motion Capture (MoCap) signal.

Preprocessing
The motion capture signal is a high dimensional vector-
valued signal. At each time-instance, the signal consists of 60
(20 joints × 3 components—x, y, z) components. Due to the
logistics of the experimental setup (i.e. to limit the total study
time) we needed to reduce the dimensionality of the input
signal. We did it by applying Principal Component Analysis
(PCA) [15] at the frame level. The number of basis vectors
for PCA was determined through a heuristic evaluation over
a sample dataset. We kept the basis vectors corresponding
to the k largest eigenvalues that account for 99% of the total
variance of the signal. The value of k usually varies from five
to 16, depending on the contents of the signal. PCA helps
to reduce the noise in the MoCap signal by eliminating low
energy principal components.

Extracting the Behavioral Cues
Behavioral cues are defined as small meaningful repetitive
patterns in a person’s gestures, posture, touching behavior,
facial expressions, eye behavior, vocal behavior, etc. [16, 37]
In this paper, we disregard the aspect of “meaning” for be-
havioral cues and use it interchangeably as “body movement
patterns.” In our prior research [35], we proposed an unsu-
pervised algorithm to extract human-interpretable patterns of
body movements from MoCap signals. Our algorithm was in-
spired by the Shift Invariant Sparse Coding (SISC) algorithm,
proposed by Morup et al. [21]. In this project, we have de-
veloped an interface to display these patterns to the speakers
as potential mannerism candidates. We briefly describe the
technique in this section. Please refer to Tanveer et al. [35]
for an elaborate discussion of this algorithm.

Mathematical Model
Let us assume that the MoCap signal, f [n], has k components,
and the length of the signal is N . The behavioral cues are
manifested in the signal as a specific pattern of variations.
The patterns can appear at any location in the signal. Let us
assume that there are D unique patterns and we denote any
dth pattern as ψd[m]. We also denote the signal representing
the activation instances of the dth pattern as αd[n], which is
just a collection of impulse functions, as shown in Figure 2.
We model the MoCap signal through a superposition of all the
patterns repeated at the corresponding activation instances. It



can be described mathematically as in Equation (1).

fm[n] =
D−1∑
d=0

αd[n] ∗ ψd[m]

=

D−1∑
d=0

N−1∑
u=0

αd[u]ψd[n− u].

(1)

Here, the asterisk (∗) symbol denotes the convolution oper-
ation. Convolution of any signal with an impulse function
results in a time-shift of the signal into the time-location of
the impulse function.

Problem Formulation
We extract the behavioral cues by estimating ψ and α that
minimize the total squared error between our MoCap model
and the actual MoCap signal. However, without any suitable
constraint, this minimization problem has many solutions. In
order to get a unique solution, we enforce a sparsity penalty
over the activation instances, α. In other words, we assume
that any particular pattern occurs only sporadically over the
signal. This assumption is reasonable because, in reality, it is
not possible for a particular pattern to occur densely without
distorting itself. The mathematical form for the optimization
problem is shown in Equation (2).

ψ̂[m], α̂[n] = argmin
ψ,α

1

2
‖f [n]− fm[n]‖2︸ ︷︷ ︸

P (ψ,α)

+λ ‖α‖1

s.t. ‖ψ‖2F ≤ 1 and, ∀nα[n] ≥ 0.

(2)

Here, the P (ψ, α) term represents the squared error. The `-1
norm of α is the term for enforcing sparsity and λ is a multi-
plier controlling the relative proportion for the error term and
the `-1 norm. The constraint ‖ψ‖2F ≤ 1 makes sure that ψ
cannot grow arbitrarily large. Finally, the constraint α[n] ≥ 0
ensures that the activation instances are non-negative. This
is important to make sure that the extracted patterns are not
upside down.

Algorithm
The objective function in this optimization problem is non-
convex, in general. However, it is convex over one of the
parameters (α or ψ) when another parameter is fixed. There-
fore, we can solve it using an Alternating Proximal Gradi-
ent Descent approach. The complete procedure is shown in
Algorithm 1. We alternatively keep one parameter fixed
and update another, and vice versa. As the error reduces at
each iteration of the gradient descent process, the algorithm
is guaranteed to converge.

However, we cannot calculate the gradient of the objective
function at all the points. The `-1 norm of α is non-smooth,
and thus non-differentiable. We use an Iterative Shrinkage
Threshold Algorithm (ISTA) [5] to solve this problem. We
use the gradients of the smooth part (i.e. P (ψ, α)) to update
the parameters. Then, at each iteration, we apply a shrink
operation over α to enforce sparsity. We also project α to
the set of non-negative numbers to enforce the non-negativity
constraint. The gradients of P (ψ, α) with respect to ψ and α

Algorithm 1: Learning the Behavioral Cues
Input: f [n], M , D and λ
Output: ψ, α
Initialize;
i← 0;
α← 0, ψ ← random;
while not Converge do

Update ψ;
reconstruct fmodel ←

∑D−1
d=1 αd ∗ ψd;

calculate∇ψ P using f , fmodel and α [Eq. (3)];
ψ(i+1) ← project(ψ(i) − γψ∇ψ P );
Update α;
reconstruct fmodel ←

∑D−1
d=1 αd ∗ ψd;

calculate∇α P using f , fmodel and ψ [Eq. (4)];
α(i+1) ← shrinkandproject(α(i) − γα∇α P );
i← i+ 1

are shown in equations (3) and (4) respectively.

∂P

∂ψd′,k′ [m′]
=

N−1∑
n=0

{fmodel,k′ [n]− f ′k[n]}αd′ [n−m′] (3)

∂P

∂αd′ [n′]
=

K−1∑
k=0

N−1∑
n=0

{fmodel,k[n]− fk[n]}ψd′,k[n−m′]

(4)

The shrinkandproject method is shown in equation (5).

α[n]← sgn(α[n])max(0, |α[n]| − γλ) ∀0≤n<N
α[n]← max(0, α[n]) ∀0≤n<N

(5)

Please note that, although the algorithm simultaneously
solves two convex problems, the whole objective function is
not convex, in general. Therefore, it is not guaranteed that the
algorithm will reach the global optima when it converges—it
may settle upon a local optima. We randomly initialize the
algorithm, run it multiple times, and choose the lowest value
to make it more likely to reach the global optima. The length
of each pattern is heuristically set to two seconds in this ap-
plication.

Speedup Techniques
While designing the user studies for the system, we needed to
extract the behavioral cues between two consecutive speeches
by a speaker. This situation imposed additional constraints on
the convergence time for the algorithm. We wanted to ensure
that it does not take more than five minutes to converge for a
three-minute MoCap sequence. To achieve this, we reduced
the dimensionality of the signal using PCA, as described be-
fore. We also set the number of patterns to be extracted at
five, as makes the program linearly slower. However, even
with these settings, the algorithm took about twenty minutes
to converge, which is unacceptable, according to the study
design.

We choose the step-sizes (γψ and γα) using a bold driver [4]
method to further speed up the algorithm. Choice of step size
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is important, as too small a value will make the algorithm
slow to converge. On the other hand, large step sizes will
make it diverge from the optimum. In the bold driver method,
the step-sizes are slowly increased (by five percent) at each it-
eration that reduces the value of the objective function. If the
value of the objective function increases at any iteration, the
step size is largely penalized (by 50 percent decrease) because
it indicates the step size is too large. We find in empirical
tests that bold driver is faster to perform than a typical Line
Search approach, described by Tanveer et al. [35]. In addi-
tion, it takes a lower number of iterations than a constant step
size. We reduced the convergence time to below five minutes
by using the bold driver approach. Finally, we use simultane-
ous parallel jobs to rerun the algorithm and choose the results
from the best performing job. We use a cluster computing
environment for the parallel execution of the jobs.

DESIGN OF THE INTERFACE
The SISC algorithm described above extracts the common be-
havioral cues related to the speaker’s body language. How-
ever, the appropriateness of the body language is largely de-
pendent on the context of the speech—which is difficult to
automatically assess. Therefore we design a user interface to
make the speakers think about their own body language using
a question-answer technique. We automatically extract the
body movement patterns and ask questions to induce thoughts
about the meaning of the cue in context of verbal content. We
hypothesize that the process of thinking about a specific pat-
tern of body movement will make them aware of their body
language.

There are two main components in the interface. The first
component shows the video of the speech and asks some
questions about the overall quality of the speech. The video
could be played normally, or fast-forwarded to quickly review
the body movements in the entire speech. The second compo-
nent of the interface is designed to make the speaker review
and think about the extracted behavioral cues (i.e. patterns
of body movements) one at a time. The speaker reviews the
extracted behavioral cues and answers three questions related

to each of them. This is shown in Figure 3. The interface also
incorporates a video player for watching the whole speech. In
addition, it contains a panel for a skeletal animation, a time-
line, a pie chart, and a Q/A section. The skeletal animation
in the upper right side of the interface represents a specific
pattern of body movement (i.e. behavioral cue). This is the ψ
parameter as denoted in Algorithm 1. The timeline shows the
corresponding activation instances (α) for that specific pat-
tern. The users can click on the time instances to play the
region of the video where the pattern is activated. This al-
lows the user to judge the verbal context for that specific be-
havioral cue. The pie chart gives a general overview to the
relative proportion of the extracted patterns. The algorithm
extracts the top five patterns of body movements. However,
there might be less than five patterns depending on how di-
verse the speaker’s body language is. In case the number of
extracted pattern become less than three, the interface will
display the following warning: “You did not move enough.
For good body language you should move more and move
purposefully”.

A question-answer panel asks the users to rate three state-
ments related to each pattern shown in the interface. These
are listed in the “Pattern Specific Ratings” row of Table 1.
The first statement makes the speaker observe the skeleton
movements. The second statement makes them analyze the
occurrences of the patterns in the timeline. The third state-
ment makes them judge how coherent of the patterns are with
the context of the speech. As we discussed before, the pri-
mary objective of these questions are to make the users think
about the body language. Observing the skeletal movements
will make them aware of a specific movement in their body.
Besides, analyzing the time-instances of the pattern occur-
rence will provide a good idea on the context of the speech.
We prepared a video tutorial1 that explains the use of the in-
terface. The participants of the user study watched it before
their first interaction with the interface.

1http://tinyurl.com/AutoMannertutorial
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Figure 4: Lab settings for the public speaking study

RESEARCH QUESTIONS
We wanted to answer the following research questions related
to AutoManner in this paper.

• How useful is the interface? Do the users report becoming
more self-aware of their body language?

• How well does the developed algorithm accurately identify
the relevant behavioral patterns? If independent observers
(e.g. workers of Mechanical Turk) annotate the accuracies
of each time instance, is there any significant difference of
accuracy between the treatment and the placebo patterns?

• Does the AutoManner interface help speakers improve
their body language?

These questions are of different levels of difficulty which we
attempted to answer from various perspectives using both
quantitative and qualitative metrics. We decided to answer
the first question from the user’s point of view. We asked
the users to evaluate the usefulness by annotating their opin-
ions about a few statements. We also asked their subjective
opinions in a free form question-answer session to gain more
insight about AutoManner’s efficacy. In the second question,
we wanted to know the algorithm’s accuracy. This could have
been objectively answered by calculating error between the
original signal and the extracted patterns. However, we are
more interested on human-perception of the algorithmic effi-
ciency, rather than just an error rate. Therefore we recruited
Mechanical TurkTM workers to observe and annotate the cor-
rectness of time instances that the algorithm detected. The
turkers annotated the meaningfulness of the patterns as well.
In the third question, we attempted to seek any improvement
in the participants body language.

STUDY DESIGN
The design of the formal user study is focused on answering
the research questions described above. Figure 5 illustrates
an outline of the study. We asked the participants to deliver
three speeches, each of which is three minutes in duration.
After each speech, the participants rated their own speeches.
Once they finished self-rating, they started interacting with
the interface. The interaction involved observing each pattern
of body movements and answering a few questions. Once
finished the interaction, the participants rated the whole in-
terface for its the usefulness. The same process continues for
the second speech. No interface was shown after the third

Self-Ratings
(for each speech)

Overall, I’m happy with the quality of
my speech. I was purposely moving
about. I was using a variety of ges-
tures. My gestures were appropriate
with the speech.

Pattern Specific
Ratings
(for each pattern)

This pattern shows something I ac-
tually did. The skeleton animation
matched with the video. This pattern
appeared meaningful to me.

Interface Ratings
(Asked after review-
ing all the patterns)

The feedback was very helpful. The
feedback made me aware of my body
language. This feedback made me
aware of at-least one gesture that I
make too frequently. I will use the
system if it is available

Table 1: List of measures rated by the participants. All of
these statements were rated in a 7-point Likert scale where
higher values indicate better.

speech—the participants only rated themselves. The mea-
sures are shown in Table 1. All these statements were rated
in a 7-point Likert scale [17].

Baseline, Treatment, and Placebo
Among the three speeches, the first one was delivered with-
out any interaction with our interface. Performance in this
speech is considered as a baseline in the study. In order to
evaluate the correctness of the algorithm, we prepared two
different versions of the feedback interface. In one version,
the interface showed the real patterns and time-instances ex-
tracted by the algorithm. We refer to this as the treatment
interface. In another version, we faked the patterns by ran-
domly sampling 2-second windows from the MoCap signal.
The time-instances of these patterns were also randomly se-
lected in the time-line. This version of the interface is referred
as the placebo. In order to collect sufficient data, we made
each participants to interact with both the placebo and the
treatment—however, their order was counter-balanced. Par-
ticipants with odd ID-number saw the placebo interface first,
whereas even ID holders saw the treatment interface first. The
participants did not know their ID number and the fact that
there were two different versions of the interface.

Demographics, and Lab Settings
Twenty-seven people participated in the user study. Among
them, 14 were female and 13 male. All of participants were
undergraduate students at the University of Rochester. They
declared themselves as native speakers of English. We re-
cruited the participants by putting flyers around the cam-
pus and also by posting invitations in the student’s Facebook
pages. The participants received ten dollars in the form of
Amazon gift cards for participating in the study. The study
took approximately forty minutes to finish.
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During the study, we video-recorded the speeches using a
Canon Rebel T3 DSLR camera. We captured the full body
motion capture (MoCap) as well, using a Kinect depth sensor
and Microsoft SDK. We used a custom arrangement for time-
synchronized records of the video and the MoCap signal. A
picture of the recording arrangement is shown in Figure 4.
The speakers chose three topics from a list of sample topics
(e.g. favorite pastime, favorite book/movie/superhero, etc.)
that we supplied for convenience. However, they were free
to choose any other topic of their interest. The topics were
decided at least one day ahead to allow the participants to
prepare for the speech.

Finally, we randomly selected 7 participants to conduct short
one-to-one interviews at the end of study. In this interview,
we asked for their subjective opinions about the interface and
audio-recorded their responses. This interview was done only
after we finished the study. We asked if the participants liked
the interface or not and the reasons for liking or disliking it.
We also asked if they could realize that there were two dif-
ferent versions of the interface—one real (treatment) and an-
other fake (placebo). In addition, we asked them to guess
which one was real and which one was fake. Finally, we
asked if the interface helped them become aware of their body
languages or not.

RESULTS
In order to evaluate the usefulness of the interface, we analyze
the participants’ responses to the interface related measures
(i.e. the third row in Table 1) in our study. These responses
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Figure 7: Box-Whisker plot for interface related responses.
The ratings are grouped in placebo and treatment interfaces.

are recorded in a 7-point Likert scale. We compute the aver-
age of the aggregated responses from the real feedback only.
In other words, the average is calculated by considering the
responses after the first speech for the participants with even
ID number, and responses after the second speech for partici-
pants with odd ID number. The average responses are shown
in Figure 6. The error bars represent one standard deviations
from the average. It is evident from the figure that most of
the responses are more than 5 in the 7-point Likert scale. The
participants provided higher ratings in the measures related to
the awareness of body language. This represents the fact that
AutoManner can successfully make the users aware of their
body language.

We perform a group-wise analysis in order to observe the dif-
ferences in the participants’ responses in placebo and treat-
ment interface. We group all the responses after interac-
tion with the placebo interface as “placebo”; and that af-
ter the treatment interface as “treatment”. A Box-Whisker
plot for these two groups is shown in Figure 7. In this plot,
the box represents the lower and upper quartile of the data.
The horizontal bar inside the box represents the median. The
whiskers represent the range of the data. We also conducted
a Wilcoxon-Mann-Whitney Rank Sum test [12] to measure
the statistical significance of differences between the groups.
Throughout the paper, we use single, two, and three asterisk
symbols to represent a rejection of the null hypothesis with
0.05, 0.01, and 0.001 significance levels respectively. Notice
that there is a statistically significant difference (p < 0.05)
in the responses for the third statement. It is clear from the
figure that the responses for the placebo group varies widely
in comparison to the treatment group. Responses for other
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Figure 8: Box-Whisker plot for the percentages of instances
for real and fake patterns. The three asterisk symbol repre-
sents a statistical significance with p < 0.001

measures are not statistically significant. This result makes
sense considering the fact that the third statement is directly
related to the parameter that we manipulated in the placebo
and treatment interface.

In the second research question, we want to evaluate the ef-
ficacy of the algorithm from human perspective. On this re-
gard, we require annotations on the accuracy of each time-
instances. However, this is a huge task as there are as many
as 50 time-instances for each pattern and 5 patterns per video.
It was impractical to ask the participants to annotate the ac-
curacy for each instance in the video. We solve this problem
by recruiting thirty workers in the Mechanical Turk2 website.
In order to ensure high quality in the answers, we accept the
turkers who completed at-least 1000 tasks with 99% accep-
tance rate. In addition, we perform a qualifying round; where
we manually selected 30 turkers based on their performance
on annotating a ground truth. These filtering and qualifica-
tion round techniques were performed in light to the work of
Mitra et al. [20].

We use an interface similar to AutoManner for the turkers to
view the videos, patterns, and time-instances. The only dif-
ference between the mechanical turk interface and the origi-
nal AutoManner is in the questions asked through the inter-
face. This interface requires the turkers to annotate the an-
swer to the following question for each time-instance: “Does
the skeletal animation match with the video at this time-
instance?”. The turkers respond either yes or no. In addition,
while evaluating the patterns, they annotate if they agree to
the following statement: “This body movement pattern con-
veys a meaning”. The response is recorded in a 7-point Likert
scale. Three different turkers annotate the same data-point.
We consider the mode (i.e. majority vote) of the responses as
the turker response for a particular data point.

For the placebo videos, we extract the corresponding real pat-
terns using the SISC algorithm. These real patterns were also
shown to the turkers and received annotations. In our experi-
ment, the turkers did not have any knowledge about the treat-
ment or placebo groups of the patterns. For each pattern, we
calculate the percentages of the time-instances that the turkers
marked as correct. We represent the data in two groups—one
for the fake patterns (placebo), another for the correspond-
ing real patterns from the same videos. Figure 8 represents a
2https://www.mturk.com/mturk/welcome
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Figure 9: Ratings for “meaningfulness” of the patterns as an-
notated by the turkers. p < 0.05

box-and-whisker plot of these accuracies. It is evident in the
figure that there is a clear difference in the perceived accu-
racy between the instances of the fake patterns and the real
patterns. The mechanical turk workers were not aware of
the differences in the patterns at all. In addition, different
workers annotated different instances of the patterns. Despite
this, we observe a statistically significant difference between
the time-instances of real patterns and fake patterns. This is
a strong evidence that the SISC algorithm performs signifi-
cantly well in detecting and localizing the patterns. As the
correctness of the time instances were marked by human an-
notators, this result also represents that the algorithm is able
to extract human-interpretable body movement patterns.

We illustrate the turker’s responses over the statement—“This
body movement pattern conveys a meaning” in Figure 9. It is
evident from this figure that the difference of responses be-
tween the fake and the real patterns is not as significant as the
differences in their time instances (i.e. Figure 8). This drop in
significance may appear surprising, but it is actually expected
as the real patterns may or may not be meaningful depending
on the context. On the other hand, we expect the fake patterns
to be less likely to be meaningful. Therefore it is expected
that there will be differences between the groups but less sig-
nificant than Figure 8. This result might also be an indication
to the fact that the question of “meaningfulness” is compara-
tively more subjective and vague than the previous scenario.
Nevertheless, the statistical significance implies that the al-
gorithm is more accurate than just random samples from the
MoCap signal.

In the third research question, we ask if there is any improve-
ment in the speaker’s body language due to the use of our in-
terface. In general, this is a difficult question to answer with
strong affirmation. Typically, change of behavior is a grad-
ual process and requires motivation and effort from within
the person. Moreover, it may be hard to immediately notice
any change in a person’s behavior given a short exposure to
a stimuli. Our interface could possibly make the speakers
aware of their body language. However, how well they are
able to internalize and reflect on the given insights is out of
the current scope of the paper.

Nonetheless, to measure improvement in body language, we
analyze how the speakers’ self-ratings differ from the first
speech to the last speech. The result is shown in Figure 10.
The top plot of Figure 10 shows the average of self ratings in
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Figure 10: Participants’ self ratings about their speech

the first video and the third video. Although there is an im-
provement in the average, only the first measure (“Overall, I
am happy with the quality of my speech”) is statistically sig-
nificant (p < 0.01). We also computed the average delta as
shown in the bottom plot of Figure 10. Mean delta is com-
puted by taking away the ratings of first video from the rating
of the third video for each participant, and then computing the
average. The plot shows the mean delta is positive for all the
self measures. These are evidence to the fact that there is an
improvement over the participants’ speaking. However, we
cannot immediately claim that this improvement is a direct
impact of using AutoManner. There are other considerations
should be taken into account. Firstly, these are self-reports
and the participants knew which one is their first speech and
which one is last. That knowledge may lead to a bias for
this result. Secondly, even if there are true improvements in
their speaking, we never know if that is due to the usage of
AutoManner or just due to practicing public speaking three
times in the study.

Besides the measures as required for answering the research
questions, we collect a few additional measures, as well. For
example, we collect the participants’ ratings on the accuracies
of the patterns. We make some interesting observations while
analyzing the responses of these measures as illustrated in
Figure 11.

It is evident from this data that the participants could not actu-
ally differentiate between the fake patterns (placebo) and the
real patterns (treatment). In addition, they sometimes rated
patterns from the placebo interface higher than those from
the treatment interface. This result is surprising especially
given the fact that there is strong statistical significance for
the difference in the mechanical turkers’ annotations. As we
shall discuss in the next subsection, this effect became more
evident when we analyzed the participants’ opinions in one-
to-one interviews. In the Discussion section, we elaborate
the reasons of this effect. We shall also describe how these
two experiments focus on two different levels of the same
question and thus one is inherently difficult to answer than
another.

This pattern
shows something

I actually did

Animation
matched

with video

Appeared 
Meaningful 

to me

Figure 11: Participants’ response to pattern-specific state-
ments in the interface

SUBJECTIVE EVALUATION
We notice an overall trend of positive responses in the sub-
jective interviews. When asked if the participants think they
became aware of their body language, all of them replied in
affirmation. One participant responded,

“It definitely made me more aware. It showed that I make
the gestures sporadically. I was consistently showing the
same gesture repeatedly throughout the three minutes of
my talk.”

While the participants highly praised the fact that they be-
came aware of their body languages, they also raised ques-
tions about the accuracy of the interface. For example, one
participant mentioned,

“Sometimes the skeleton and what I was doing didn’t
match ... and sometimes I wasn’t sure whether or not,
cuz there was part which did match and part which
didn’t match at all. So I’m not sure to say yes or not
to it.”

Some of the participants complained that the algorithm is ac-
tually picking the same patterns,

“It was a good idea here, but I’m not sure it picks up all
of my gestures that well ... It seems like it’s picking up all
the same gestures. For example, I swayed a lot. It picked
up the swaying but put it as five different gestures”

However, another participant said, “I would say, more than
half are accurate.”. We thought these discrepancies were just
due to the fact that the participants watched not only a treat-
ment interface but a placebo interface as well. So perhaps
they were referring to the errors in the placebo interface.

When we asked if the participants realized that there were two
different styles in the interface—one real and another fake—
none of them answered in affirmation. They appeared per-
plexed. One of the participant even argued that it was not
possible because,

“I [the participant] remember both of them [the placebo
and treatment interfaces] had the same thing [i.e. same
pattern]!”.

Their answers to guess which interface showed the real pat-
tern also appeared random. This provides strong evidence
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that the participants believed, in some cases, the placebo in-
terface was as good as or even better than the treatment inter-
face. We discuss more on this in the next section.

DISCUSSIONS
We became interested in knowing why the participants were
unable to differentiate between the placebo and the treatment
interfaces. In order to find the answer, we manually went
through the interfaces. In this process, we found several pat-
terns similar in both the placebo and the treatment interface.
We found that the method that we used to generate the fake
patterns was responsible for this problem. We generated the
fake patterns by (uniformly) randomly picking a two-second
window from the MoCap sequence and randomly assigning
the time-instances for each pattern. We assumed, as the time-
instances were completely random, it was a good strategy for
designing the placebo interface. However, this argument is
not valid when a single movement is repeated many times
throughout the video. In that case, even a randomly selected
window may pick up accurate gestures as the same pattern is
repeated in the original sequence. In addition, the time in-
stances may match in some cases due of the existence of high
number of same patterns. Therefore, perhaps, our randomly
sampled fake patterns, in some instances, might have over-
lapped with the real patterns. In retrospect, this outcome was
not obvious during the initial stage of our exploration. We
consider this as an important knowledge acquired in the pro-
cess of experimentation to inform our future work.

A question still remains unanswered in the explanation above.
Why the mechanical turk annotations were not as affected as
the participants’ annotations? The answer to this question re-
sides in the way we collected data in these two experiments.
Turkers annotated one time-instance at a time. When they
looked at a certain time-instance, they only decided if the
current movement in the video is matching with the skeletal
movements or not. On the other hand, when the participants
decide if a pattern matched with the video, they were pre-
sented with all the time-instances at once. In order to decide
this match, they needed to watch several time-instances and
summarize what they can recall. We hypothesize, these two
processes are fundamentally different and thus it is unfair to
make a direct comparison between the two results.

From this experience we gained interesting insights on de-
signing behavior related questions in general as shown with
an illustration in Figure 12. It is easier to answer specific
questions that require less memory. On the other hand, it
is difficult to answer questions where a person needs to de-
cide an answer by remembering answers to a large quantity
of smaller questions. For example, in our study, the task that
asked the participant to match a particular time-instance of a

video with the skeletal animation is simple; whereas, answer-
ing if a pattern is meaningful or not is context dependent and
thus, hard. Unfortunately, it is more expensive to collect re-
sponses for more specific questions because they need a lot
of questions to be answered. A well designed study needs to
find a balance in this trade-off.

Finally, we sought answer to one last question: why did the
participants like the interface and claim that they became
aware of their body language if they were confused about
differentiating the real and fake patterns? We argue that, al-
though becoming self-aware is dependent on algorithmic ac-
curacy, this dependence is not linearly related. The users only
need a few correct samples to become aware of their body
language.

FUTURE WORK
This work can help future experiments that follow a similar
design. We think this experience has enough potential to gen-
erate numerous interesting questions related to study design
and careful choice of questions in behavioral experiments.
In the future, we shall continue our endeavor to design bet-
ter interfaces with more appropriate choices of artificial in-
telligence components. We can possibly try other interest-
ing unsupervised approaches for extracting body movement
patterns. Unsupervised analysis of nonverbal behaviors is a
lightly-explored and open field of research with numerous
possibilities.

In this paper, we could not decisively determine whether the
speakers actually improved their body language as a result of
using this interface, or they just felt that they did better due
to the interaction with a new technology. In the future, we
shall try to evaluate this aspect using the opinions of public
speaking experts. We shall also try to run a longitudinal study
in order to tease out the novelty effect.

CONCLUSION
We presented an automated interface to make public speakers
aware of their mannerisms. We used an unsupervised, Shift
Invariant Sparce Coding (SISC) algorithm to automatically
extract the common body movement patterns of the speaker.
We showed these patterns as potential mannerism candidates.
We designed a subtle question and answer-based scheme to
provide non-judgmental feedback on mannerisms. Our ex-
periments show that the speakers liked the interface, as they
became aware of their body language. In addition, mechan-
ical turk worker’s annotations reveal that the algorithm we
used in this system can extract human-interpretable patterns
of body language.
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